A Widely and Continuously Tunable Single-Mode Transmitter Based on a Hybrid Microcavity Laser

A method for achieving the single-mode and efficient unidirectional emission of a whispering gallery mode (WGM) semiconductor laser is presented herein. Hybrid square-rectangular lasers (HSRLs) and hybrid square/rhombus-rectangular lasers (HSRRLs) consisting of a Fabry–Pérot (FP) cavity and a square...

Full description

Saved in:
Bibliographic Details
Main Authors: Miao-Qing Wang, Bin Zhang, Zhen-Ning Zhang, You-Zeng Hao, Zun-Hao Hu, Yue-De Yang, Jin-Long Xiao, António L. Teixeira, Yong-Zhen Huang
Format: Article
Language:English
Published: MDPI AG 2024-11-01
Series:Photonics
Subjects:
Online Access:https://www.mdpi.com/2304-6732/11/11/1080
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A method for achieving the single-mode and efficient unidirectional emission of a whispering gallery mode (WGM) semiconductor laser is presented herein. Hybrid square-rectangular lasers (HSRLs) and hybrid square/rhombus-rectangular lasers (HSRRLs) consisting of a Fabry–Pérot (FP) cavity and a square or rhombus cavity microcavity are described. In addition, a transmitter optical subassembly (TOSA) based on an HSRRL chip was fabricated, which has a wide and continuous wavelength tuning range. Wavelength channels from 1555.75 nm to 1568.15 nm with a spacing of 50 GHz were demonstrated with a good side mode suppression ratio (SMSR) and good output power. These devices have the potential to meet the typical requirements of optical communication networks.
ISSN:2304-6732