From bench to bedside: the research status and application opportunity of extracellular vesicles and their engineering strategies in the treatment of skin defects

Abstract Engineered extracellular vesicles (EVs), which are EVs modified to enhance certain biological properties, offer a promising therapeutic strategy for the treatment of skin defects. Conventional nanomaterials often encounter clinical translation challenges due to potential toxicity and limite...

Full description

Saved in:
Bibliographic Details
Main Authors: Longwei Cui, Yantao Song, Zhipeng Hou, Liqun Yang, Shu Guo, Chenchao Wang
Format: Article
Language:English
Published: BMC 2025-05-01
Series:Journal of Nanobiotechnology
Subjects:
Online Access:https://doi.org/10.1186/s12951-025-03461-4
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Engineered extracellular vesicles (EVs), which are EVs modified to enhance certain biological properties, offer a promising therapeutic strategy for the treatment of skin defects. Conventional nanomaterials often encounter clinical translation challenges due to potential toxicity and limited targeting. Engineered EVs, utilizing inherent biocompatibility and effective physiological barrier traversal, can ameliorate the limitations of conventional EV therapies to some extent, including detection, isolation, purification, and therapeutic validation. Recent advances in EV engineering, such as genetic modification of production cells to control cargo, surface engineering for targeted delivery, and pre-treatment of parental cells to optimize production and bioactivity, have improved therapeutic efficacy in laboratory studies through enhanced targeting, prolonged retention time, and increased yield. Many studies have suggested the potential ability of engineered EVs to treat a variety of skin defects, including diabetic wounds, burns, and hypertrophic scars, providing a promising avenue for their clinical translation in this area. This paper reviews the therapeutic potential of engineered EVs in skin regeneration, highlighting their role in promoting cell migration and angiogenesis, modulating inflammation and reducing scar formation during wound healing. In addition, given the investment in this rapidly evolving field and the growing clinical trial activity, this review also explores recent global advances and provides an outlook on future application opportunities for EVs in the treatment of skin defects. Graphical abstract
ISSN:1477-3155