Long-Term Dynamic Behavior of a Higher-Order Coupled Kirchhoff Model with Nonlinear Strong Damping
In this paper, we study the long-time dynamics problem of a class of higher-order Kirchhoff coupled systems with nonlinear strong damping. The existence and uniqueness of the solutions of these equations in different spaces are proved by prior estimation and Faedo–Galerkin method; secondly, the fami...
Saved in:
| Main Authors: | Penghui Lv, Yan Liu, Shasha Yu |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2022-01-01
|
| Series: | Journal of Mathematics |
| Online Access: | http://dx.doi.org/10.1155/2022/7044906 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Long-time dynamics of a random higher-order Kirchhoff model with variable coefficient rotational inertia
by: Penghui Lv, et al.
Published: (2024-11-01) -
Blow-Up of Solutions for a Coupled Nonlinear Viscoelastic Equation with Degenerate Damping Terms: Without Kirchhoff Term
by: Salah Mahmoud Boulaaras, et al.
Published: (2021-01-01) -
Pullback Attractors for Nonautonomous Degenerate Kirchhoff Equations with Strong Damping
by: Honglv Ma, et al.
Published: (2021-01-01) -
Asymptotic behavior of Kirchhoff type plate equations with nonlocal weak damping, anti-damping and subcritical nonlinearity
by: Ling Xu, et al.
Published: (2025-08-01) -
Long-time behavior of coupled beam models with fractional energy damping
by: Penghui Lv, et al.
Published: (2025-04-01)