Optimization and Analysis of Sensitive Areas for Look-Ahead Electromagnetic Logging-While-Drilling Based on Geometric Factors

Look-ahead electromagnetic (EM) logging-while-drilling (LWD) plays an indispensable role in the prediction of deep and ultra-deep reservoirs. Traditional electromagnetic logging-while-drilling (EMLWD) and ultra-deep EMLWD technologies exhibit certain limitations in the real-time detection of ahead-o...

Full description

Saved in:
Bibliographic Details
Main Authors: Guoyu Li, Zhenguan Wu, Xiaoqiao Liao, Xizhou Yue, Xiang Zhang, Tianlin Liu, Yunxin Zeng
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/18/12/3014
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Look-ahead electromagnetic (EM) logging-while-drilling (LWD) plays an indispensable role in the prediction of deep and ultra-deep reservoirs. Traditional electromagnetic logging-while-drilling (EMLWD) and ultra-deep EMLWD technologies exhibit certain limitations in the real-time detection of ahead-of-bit formations, making it challenging to meet precision drilling requirements under complex well conditions, with the development of petroleum and gas geology and exploration progress I n the direction of deep, ultra-deep, and complex reservoirs. As a new LWD technology, look-ahead EMLWD enables real-time identification of formation structures, fluid distributions, and interface positions ahead of the drill bit during the drilling process by leveraging the propagation characteristics of EM. This capability provides critical decision-making support for wellbore trajectory optimization, drilling risk assessment, and reservoir evaluation. Therefore, this paper conducts research on theoretical methodologies for look-ahead EMLWD. Leveraging the Born geometric factor theory, we derive the expression for the 3D geometric factor spatial signal and analyze the sensitivity of each component related to look-ahead. Building on this foundation, we establish the sensitivity expression for look-ahead operations and investigate the impact of various antenna configurations on its signal. The results indicate that the coaxial component (gzz) and coplanar components (gxx and gyy) are the primary contributors to look-ahead EMLWD. As frequency decreases and spacing increases, the sensitive region for look-ahead expands. Moreover, look-ahead detection sensitivity becomes increasingly concentrated in front of the drill bit, while the signal at the opposite end is attenuated by incorporating additional coils. Under identical formation conditions, compared with a single-transmitter single-receiver system, a single-transmitter double-receiver coil system exhibits a significantly stronger signal amplitude and more pronounced changes at the formation boundary. Additionally, this configuration enhances sensitivity and extends the sensitive distance in response to variations in formation resistivity.
ISSN:1996-1073