Explicit-Time Trajectory Tracking for a State-Constraint Continuum Free-Floating Space Robot with Smooth Joint-Path and Low Input

For the problem of large joint angular velocity and high input in the trajectory planning and control of robots, an explicit-time trajectory tracking for a state-constraint continuum free-floating space robot with smooth joint-path and low input is proposed. Employing the piecewise constant curvatur...

Full description

Saved in:
Bibliographic Details
Main Authors: Rui Tang, Yicheng Liu, Jialing Yang, Xiang Ma, Wen Yan
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/5/2730
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:For the problem of large joint angular velocity and high input in the trajectory planning and control of robots, an explicit-time trajectory tracking for a state-constraint continuum free-floating space robot with smooth joint-path and low input is proposed. Employing the piecewise constant curvature (PCC) assumption as the modeling foundation for the continuum space robot and utilizing modified Rodriguez parameters (MRPs) to describe attitude errors, a pose error feedback kinematic model for the continuum space robot is established. Based on the Lagrangian method, a dynamic model for the continuum space robot is developed. Explicit time theory and pose feedback methods are employed for the trajectory planning of the continuum space robot. Using explicit time theory and sliding mode control, tracking control for the planned joint trajectory is conducted. The Lyapunov theory is utilized to demonstrate the convergence of the system tracking error within the explicit time. Finally, the combination of trajectory planning and tracking control enhances the control performance of the continuum space robot. Simulation results validate the effectiveness of the proposed methods.
ISSN:2076-3417