Short-Beam Shear Fatigue Behavior on Unidirectional GLARE: Mean Shear Stress Effect, Scatter, and Anisotropy

This paper investigates the effect of mean shear stress on short-beam shear fatigue in a GLARE 1-3/2 commercial fiber–metal laminate (FML). This study explores three shear stress ratios (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">...

Full description

Saved in:
Bibliographic Details
Main Authors: Douglas G. Caetano, Hector G. Kotik, Juan E. Perez Ipiña, Enrique M. Castrodeza
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Fibers
Subjects:
Online Access:https://www.mdpi.com/2079-6439/13/6/77
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper investigates the effect of mean shear stress on short-beam shear fatigue in a GLARE 1-3/2 commercial fiber–metal laminate (FML). This study explores three shear stress ratios (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi mathvariant="bold-italic">R</mi></mrow><mrow><mi mathvariant="bold-italic">τ</mi></mrow></msub></mrow></semantics></math></inline-formula> 0.1, 0.3, and 0.5) and two material orientations (longitudinal and transversal) under constant amplitude fatigue. Different stress levels for each <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi mathvariant="bold-italic">R</mi></mrow><mrow><mi mathvariant="bold-italic">τ</mi></mrow></msub></mrow></semantics></math></inline-formula> value were explored to obtain failures between 10<sup>3</sup> and 10<sup>6</sup> load cycles. The experimental results reveal anisotropy, with transversal specimens exhibiting lower performance and increased scatter. The mean shear stress effect is discussed herein, with insights into the critical role of mean shear of fatigue performance. <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi mathvariant="bold-italic">R</mi></mrow><mrow><mi mathvariant="bold-italic">τ</mi></mrow></msub></mrow></semantics></math></inline-formula> 0.1 was the most severe condition and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi mathvariant="bold-italic">R</mi></mrow><mrow><mi mathvariant="bold-italic">τ</mi></mrow></msub></mrow></semantics></math></inline-formula> 0.5 was the least severe. The <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi mathvariant="bold-italic">R</mi></mrow><mrow><mi mathvariant="bold-italic">τ</mi></mrow></msub></mrow></semantics></math></inline-formula> 0.3 condition produced steeper S-N curves, indicating that the combined effect of mean shear stress and shear stress amplitude led to a higher rate of damage accumulation. The fractographic analysis investigated the failure modes and confirmed the damage dominated by Mode II, supporting the test methodology employed.
ISSN:2079-6439