A degree theory for compact perturbations of proper C1 Fredholm mappings of index 0

We construct a degree for mappings of the form F+K between Banach spaces, where F is C1 Fredholm of index 0 and K is compact. This degree generalizes both the Leray-Schauder degree when F=I and the degree for C1 Fredholm mappings of index 0 when K=0. To exemplify the use of this degree, we prov...

Full description

Saved in:
Bibliographic Details
Main Authors: Patrick J. Rabier, Mary F. Salter
Format: Article
Language:English
Published: Wiley 2005-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/AAA.2005.707
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We construct a degree for mappings of the form F+K between Banach spaces, where F is C1 Fredholm of index 0 and K is compact. This degree generalizes both the Leray-Schauder degree when F=I and the degree for C1 Fredholm mappings of index 0 when K=0. To exemplify the use of this degree, we prove the “invariance-of-domain” property when F+K is one-to-one and a generalization of Rabinowitz's global bifurcation theorem for equations F(λ,x)+K(λ,x)=0.
ISSN:1085-3375
1687-0409