Experimental and Numerical Simulation Study of the Influence of Fe(C<sub>5</sub>H<sub>5</sub>)<sub>2</sub>-SiO<sub>2</sub> Composite Dry Powders on Characteristics of Hydrogen/Methane/Air Explosion

In order to ensure the safety of methane/hydrogen, regular SiO<sub>2</sub> powder was modified. Fe(C<sub>5</sub>H<sub>5</sub>)<sub>2</sub>/SiO<sub>2</sub> composite dry powder (CDP) was selected as the explosion-suppression material. Explos...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhiqian Zheng, Huiqian Liao, Hongfu Mi, Kaixuan Liao, Haoliang Zhang, Yi Li, Yanhui Ren, Zhijun Li, Nanfang Li, Wei Xia
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Fire
Subjects:
Online Access:https://www.mdpi.com/2571-6255/8/5/198
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In order to ensure the safety of methane/hydrogen, regular SiO<sub>2</sub> powder was modified. Fe(C<sub>5</sub>H<sub>5</sub>)<sub>2</sub>/SiO<sub>2</sub> composite dry powder (CDP) was selected as the explosion-suppression material. Explosion-suppression experiments and numerical simulations were adopted to investigate the inhibition effect of 0% (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi mathvariant="italic">X</mi></mrow><mrow><msub><mrow><mi mathvariant="normal">H</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub></mrow></semantics></math></inline-formula> = 0%) and 20% (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi mathvariant="italic">X</mi></mrow><mrow><msub><mrow><mi mathvariant="normal">H</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub></mrow></semantics></math></inline-formula> = 20%) hydrogen doping ratios. The flame structure, flame propagation speed, and maximum explosion pressure are depicted to compare the inhibition effect of different mass fractions (<i>X</i><sub>Fe(C5H5)2</sub> = 0–6%). The results showed that CDP significantly reduced the flame propagation velocity and maximum explosion pressure of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi mathvariant="italic">X</mi></mrow><mrow><msub><mrow><mi mathvariant="normal">H</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub></mrow></semantics></math></inline-formula> = 0%. The best effect was observed when 6% Fe(C<sub>5</sub>H<sub>5</sub>)<sub>2</sub> was added, with the velocity reduced to 9.241 m/s. The maximum explosion pressure was reduced to 0.518 MPa, and the effect was relatively weak for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi mathvariant="italic">X</mi></mrow><mrow><msub><mrow><mi mathvariant="normal">H</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub></mrow></semantics></math></inline-formula> = 20%, with the maximum pressure reduced to 0.525 MPa. In addition, the key radical production and temperature sensitivity showed that Fe(C<sub>5</sub>H<sub>5</sub>)<sub>2</sub> altered the molar fractions of the major species and increased the consumption of •H, •O, and •OH. As the mass fraction of Fe(C<sub>5</sub>H<sub>5</sub>)<sub>2</sub> increased, the steady-state concentrations of •H, •O, and •OH in the system showed a significant decreasing trend. This phenomenon originated from the two-step synergistic mechanism of Fe(C<sub>5</sub>H<sub>5</sub>)<sub>2</sub> inhibiting radical generation and accelerating radical consumption. This study provides insight into the process of Fe(C<sub>5</sub>H<sub>5</sub>)<sub>2</sub>/SiO<sub>2</sub> composite dry powder inhibition and renders theoretical guidance for the explosion protection of methane/hydrogen.
ISSN:2571-6255