Evaluation of the Stability of Loess Slopes by Integrating a Knowledge Graph and Dendrogram Neural Network
Loess deposits in China, covering extensive regions, exhibit distinctive physical and mechanical characteristics, including collapsibility and reduced mechanical strength. These properties contribute to heightened susceptibility to slope-related geological hazards, such as landslides and collapses,...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-07-01
|
| Series: | Applied Sciences |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2076-3417/15/15/8263 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Loess deposits in China, covering extensive regions, exhibit distinctive physical and mechanical characteristics, including collapsibility and reduced mechanical strength. These properties contribute to heightened susceptibility to slope-related geological hazards, such as landslides and collapses, in these areas. The widespread distribution and challenging prevention of these geological disasters have emerged as significant impediments to both public safety and economic development in China. Moreover, geological disaster data originates from diverse sources and exists in substantial fragmented, decentralized, and unstructured formats, including textual records and graphical representations. These datasets exhibit complex structures and heterogeneous formats yet suffer from inadequate organization and storage due to the absence of unified descriptive standards. The lack of systematic categorization and standardized representation significantly hinders effective data integration and knowledge extraction across different sources. To address these challenges, this study proposes a novel loess slope stability assessment method employing a dendrogram neural network (GNN-TreeNet) integrated with knowledge graph technology. The methodology progresses through three phases: (1) construction of a multi-domain knowledge graph integrating a large number of loess slopes with historical disaster records, instability factor relationships, and empirical parameter correlations; (2) generation of expressive node embeddings capturing inherent connections via graph neural networks; (3) development and training of the GNN-TreeNet architecture that leverages the graph’s enhanced representation capacity for stability evaluation. This structured framework enables cross-disciplinary data synthesis and interpretable slope stability analysis through a systematic integration of geological, geographical, and empirical knowledge components. |
|---|---|
| ISSN: | 2076-3417 |