Transformer-Based Decomposition of Electrodermal Activity for Real-World Mental Health Applications

Decomposing Electrodermal Activity (EDA) into phasic (short-term, stimulus-linked responses) and tonic (longer-term baseline) components is essential for extracting meaningful emotional and physiological biomarkers. This study presents a comparative analysis of knowledge-driven, statistical, and dee...

Full description

Saved in:
Bibliographic Details
Main Authors: Charalampos Tsirmpas, Stasinos Konstantopoulos, Dimitris Andrikopoulos, Konstantina Kyriakouli, Panagiotis Fatouros
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/14/4406
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Decomposing Electrodermal Activity (EDA) into phasic (short-term, stimulus-linked responses) and tonic (longer-term baseline) components is essential for extracting meaningful emotional and physiological biomarkers. This study presents a comparative analysis of knowledge-driven, statistical, and deep learning-based methods for EDA signal decomposition, with a focus on in-the-wild data collected from wearable devices. In particular, the authors introduce the Feel Transformer, a novel Transformer-based model adapted from the Autoformer architecture, designed to separate phasic and tonic components without explicit supervision. The model leverages pooling and trend-removal mechanisms to enforce physiologically meaningful decompositions. Comparative experiments against methods such as Ledalab, cvxEDA, and conventional detrending show that the Feel Transformer achieves a balance between feature fidelity (SCR frequency, amplitude, and tonic slope) and robustness to noisy, real-world data. The model demonstrates potential for real-time biosignal analysis and future applications in stress prediction, digital mental health interventions, and physiological forecasting.
ISSN:1424-8220