Finite-time blow-up in a quasilinear fully parabolic attraction-repulsion chemotaxis system with density-dependent sensitivity

This article concerns the quasilinear fully parabolic attraction-repulsion chemotaxis system $$\displaylines{ u_t=\nabla \cdot ((u+1)^{m-1}\nabla u -\chi u(u+1)^{p-2} \nabla v + \xi u(u+1)^{p-2}\nabla w),\quad x \in \Omega,\; t >0,\cr v_t=\Delta v+\alpha u-\beta v, \quad x \in \Omega,\; t >0,\...

Full description

Saved in:
Bibliographic Details
Main Authors: Yutaro Chiyo, Takeshi Uemura, Tomomi Yokota
Format: Article
Language:English
Published: Texas State University 2025-08-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2025/81/abstr.html
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This article concerns the quasilinear fully parabolic attraction-repulsion chemotaxis system $$\displaylines{ u_t=\nabla \cdot ((u+1)^{m-1}\nabla u -\chi u(u+1)^{p-2} \nabla v + \xi u(u+1)^{p-2}\nabla w),\quad x \in \Omega,\; t >0,\cr v_t=\Delta v+\alpha u-\beta v, \quad x \in \Omega,\; t >0,\cr w_t=\Delta w+\gamma u-\delta w, \quad x \in \Omega,\; t >0 }$$ with homogeneous Neumann boundary conditions, where $\Omega \subset \mathbb{R}^n$ $(n \in \{2,3\})$ is an open ball, $m, p \in \mathbb{R}$, $\chi, \xi, \alpha, \beta, \gamma, \delta >0$ are constants. The main result asserts finite-time blow-up of solutions to this system with some positive initial data when $\chi\alpha-\xi\gamma >0$, $p \ge 2$ and $p-m >2/n$.
ISSN:1072-6691