Influences on Shotcrete Rebound from Walls with Random Roughness
Concrete slurry can be sprayed on walls for reinforcement; however, there is a certain amount of rebound which is hazardous, lowers production quality, and wastes material. To investigate this problem, we studied single slurry droplets at the mesoscopic level. We deduced the factors influencing drop...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2018-01-01
|
| Series: | Advances in Materials Science and Engineering |
| Online Access: | http://dx.doi.org/10.1155/2018/7401358 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Concrete slurry can be sprayed on walls for reinforcement; however, there is a certain amount of rebound which is hazardous, lowers production quality, and wastes material. To investigate this problem, we studied single slurry droplets at the mesoscopic level. We deduced the factors influencing droplet spreading and wall adhesion to create models of shotcrete rebound. Then, a numerical simulation orthogonal experiment investigating droplet-wall impacts was performed. The relationship between the spreading coefficient and each influencing factor is discussed, and numerical models are presented. Finally, the obtained models are verified by physical experiments. The results show that the spreading coefficient can be used to better characterize the effect of slurry droplet adhesion to walls. Modeled and experimentally observed droplet-wall impacts showed good consistency. The influence of each factor on the spreading coefficient was determined in the following order of strength: droplet velocity and viscosity, wall roughness, and surface tension. The spreading coefficient increases with velocity, decreases with viscosity and roughness, and increases first and then decreases with surface tension. This study improves the fluid dynamics-based theory of multiphase flow in concrete slurry and provides a theoretical basis for mitigating shotcrete rebound. |
|---|---|
| ISSN: | 1687-8434 1687-8442 |