A Machine Learning‐Based Approach to Quantify ENSO Sources of Predictability

Abstract A machine learning method is used to identify sources of long‐term ENSO predictability in the ocean (sea surface temperature (SST) and heat content) and the atmosphere (near‐surface zonal wind (U10)). Tropical SST represents the primary source of predictability skill. While U10 does not inc...

Full description

Saved in:
Bibliographic Details
Main Authors: Ioana Colfescu, Hannah Christensen, David John Gagne
Format: Article
Language:English
Published: Wiley 2024-07-01
Series:Geophysical Research Letters
Subjects:
Online Access:https://doi.org/10.1029/2023GL105194
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract A machine learning method is used to identify sources of long‐term ENSO predictability in the ocean (sea surface temperature (SST) and heat content) and the atmosphere (near‐surface zonal wind (U10)). Tropical SST represents the primary source of predictability skill. While U10 does not increase the skill when associated with SST, our analysis suggests U10 alone has apredictive skill comparable to that of SST between 11 and 21 months in advance, from late fall up to late spring. The long‐lead signal originates from coupled wind‐SST interactions across the Indian Ocean (IO) and propagates across the Pacific via an atmospheric bridge mechanism. A linear correlation analysis supports this mechanism, suggesting a precursor link between anomalies in SST in the western and wind in the eastern IO. Our results have important implications for ENSO predictions beyond 1 year ahead and identify the key role of U10 over the IO.
ISSN:0094-8276
1944-8007