A Novel Megastable Chaotic System with Hidden Attractors and Its Parameter Estimation Using the Sparrow Search Algorithm

This work proposes a new two-dimensional dynamical system with complete nonlinearity. This system inherits its nonlinearity from trigonometric and hyperbolic functions like sine, cosine, and hyperbolic sine functions. This system gives birth to infinite but countable coexisting attractors before and...

Full description

Saved in:
Bibliographic Details
Main Authors: Atefeh Ahmadi, Vijeesh Vijayan, Hayder Natiq, Alexander N. Pchelintsev, Karthikeyan Rajagopal, Sajad Jafari
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Computation
Subjects:
Online Access:https://www.mdpi.com/2079-3197/12/12/245
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This work proposes a new two-dimensional dynamical system with complete nonlinearity. This system inherits its nonlinearity from trigonometric and hyperbolic functions like sine, cosine, and hyperbolic sine functions. This system gives birth to infinite but countable coexisting attractors before and after being forced. These two megastable systems differ in the coexisting attractors’ type. Only limit cycles are possible in the autonomous version, but torus and chaotic attractors can emerge after transforming to the nonautonomous version. Because of the position of equilibrium points in different attractors’ attraction basins, this system can simultaneously exhibit self-excited and hidden coexisting attractors. This system’s dynamic behaviors are studied using state space, bifurcation diagram, Lyapunov exponents (LEs) spectrum, and attraction basins. Finally, the forcing term’s amplitude and frequency are unknown parameters that need to be found. The sparrow search algorithm (SSA) is used to estimate these parameters, and the cost function is designed based on the proposed system’s return map. The simulation results show this algorithm’s effectiveness in identifying and estimating parameters of the novel megastable chaotic system.
ISSN:2079-3197