Iterative Approximation of Fixed Points by Using F Iteration Process in Banach Spaces
We connect the F iteration process with the class of generalized α-nonexpansive mappings. Under some appropriate assumption, we establish some weak and strong convergence theorems in Banach spaces. To show the numerical efficiency of our established results, we provide a new example of generalized α...
Saved in:
| Main Authors: | Junaid Ahmad, Kifayat Ullah, Muhammad Arshad, Manuel de la Sen |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2021-01-01
|
| Series: | Journal of Function Spaces |
| Online Access: | http://dx.doi.org/10.1155/2021/6994660 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Iterative Approximation of Endpoints for Multivalued Mappings in Banach Spaces
by: Thabet Abdeljawad, et al.
Published: (2020-01-01) -
Approximating Fixed Points of Operators Satisfying (RCSC) Condition in Banach Spaces
by: Thabet Abdeljawad, et al.
Published: (2020-01-01) -
N*-Iteration Approach for Approximation of Fixed Points in Uniformly Convex Banach Space
by: Raghad I. Sabri
Published: (2025-01-01) -
Approximating Fixed Points of Reich–Suzuki Type Nonexpansive Mappings in Hyperbolic Spaces
by: Kifayat Ullah, et al.
Published: (2020-01-01) -
A New Iteration Scheme for Approximating Common Fixed Points in Uniformly Convex Banach Spaces
by: Naeem Saleem, et al.
Published: (2023-01-01)