A Diagrammatic Temperley-Lieb Categorification

The monoidal category of Soergel bimodules categorifies the Hecke algebra of a finite Weyl group. In the case of the symmetric group, morphisms in this category can be drawn as graphs in the plane. We define a quotient category, also given in terms of planar graphs, which categorifies the Temperley-...

Full description

Saved in:
Bibliographic Details
Main Author: Ben Elias
Format: Article
Language:English
Published: Wiley 2010-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/2010/530808
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850236561404198912
author Ben Elias
author_facet Ben Elias
author_sort Ben Elias
collection DOAJ
description The monoidal category of Soergel bimodules categorifies the Hecke algebra of a finite Weyl group. In the case of the symmetric group, morphisms in this category can be drawn as graphs in the plane. We define a quotient category, also given in terms of planar graphs, which categorifies the Temperley-Lieb algebra. Certain ideals appearing in this quotient are related both to the 1-skeleton of the Coxeter complex and to the topology of 2D cobordisms. We demonstrate how further subquotients of this category will categorify the irreducible modules of the Temperley-Lieb algebra.
format Article
id doaj-art-1154e2a9582f49148d8fc4e2ed51ea22
institution OA Journals
issn 0161-1712
1687-0425
language English
publishDate 2010-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-1154e2a9582f49148d8fc4e2ed51ea222025-08-20T02:01:56ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252010-01-01201010.1155/2010/530808530808A Diagrammatic Temperley-Lieb CategorificationBen Elias0Department of Mathematics, Columbia University, New York, NY 10027, USAThe monoidal category of Soergel bimodules categorifies the Hecke algebra of a finite Weyl group. In the case of the symmetric group, morphisms in this category can be drawn as graphs in the plane. We define a quotient category, also given in terms of planar graphs, which categorifies the Temperley-Lieb algebra. Certain ideals appearing in this quotient are related both to the 1-skeleton of the Coxeter complex and to the topology of 2D cobordisms. We demonstrate how further subquotients of this category will categorify the irreducible modules of the Temperley-Lieb algebra.http://dx.doi.org/10.1155/2010/530808
spellingShingle Ben Elias
A Diagrammatic Temperley-Lieb Categorification
International Journal of Mathematics and Mathematical Sciences
title A Diagrammatic Temperley-Lieb Categorification
title_full A Diagrammatic Temperley-Lieb Categorification
title_fullStr A Diagrammatic Temperley-Lieb Categorification
title_full_unstemmed A Diagrammatic Temperley-Lieb Categorification
title_short A Diagrammatic Temperley-Lieb Categorification
title_sort diagrammatic temperley lieb categorification
url http://dx.doi.org/10.1155/2010/530808
work_keys_str_mv AT benelias adiagrammatictemperleyliebcategorification
AT benelias diagrammatictemperleyliebcategorification