Device performances analysis of p-type doped silicene-based field effect transistor using SPICE-compatible model.

Moore's Law is approaching its end as transistors are scaled down to tens or few atoms per device, researchers are actively seeking for alternative approaches to leverage more-than-Moore nanoelectronics. Substituting the channel material of a field-effect transistors (FET) with silicene is fore...

Full description

Saved in:
Bibliographic Details
Main Authors: Mu Wen Chuan, Munawar Agus Riyadi, Afiq Hamzah, Nurul Ezaila Alias, Suhana Mohamed Sultan, Cheng Siong Lim, Michael Loong Peng Tan
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2022-01-01
Series:PLoS ONE
Online Access:https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0264483&type=printable
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Moore's Law is approaching its end as transistors are scaled down to tens or few atoms per device, researchers are actively seeking for alternative approaches to leverage more-than-Moore nanoelectronics. Substituting the channel material of a field-effect transistors (FET) with silicene is foreseen as a viable approach for future transistor applications. In this study, we proposed a SPICE-compatible model for p-type (Aluminium) uniformly doped silicene FET for digital switching applications. The performance of the proposed device is benchmarked with various low-dimensional FETs in terms of their on-to-off current ratio, subthreshold swing and drain-induced barrier lowering. The results show that the proposed p-type silicene FET is comparable to most of the selected low-dimensional FET models. With its decent performance, the proposed SPICE-compatible model should be extended to the circuit-level simulation and beyond in future work.
ISSN:1932-6203