Three-Tiered Controller for Obstacle Avoidance in a PV Panel-Powered Wheeled Mobile Robot: Considering Actuators and Power Electronics Stages

This research addresses the obstacle avoidance problem in wheeled mobile robots powered by renewable energy by considering all subsystems involved. A three-tier hierarchical controller is developed, integrating the technique of artificial potential fields. The proposed controller incorporates the dy...

Full description

Saved in:
Bibliographic Details
Main Authors: Erik Reyes-Reyes, Benjamin Natanael Santiago-Nogales, Ramon Silva-Ortigoza, Magdalena Marciano-Melchor, Jose Rafael Garcia-Sanchez, Angel Adrian Orta-Quintana, Gilberto Silva-Ortigoza, Hind Taud, Miguel Hernandez-Bolanos
Format: Article
Language:English
Published: IEEE 2024-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10793056/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849219982635827200
author Erik Reyes-Reyes
Benjamin Natanael Santiago-Nogales
Ramon Silva-Ortigoza
Magdalena Marciano-Melchor
Jose Rafael Garcia-Sanchez
Angel Adrian Orta-Quintana
Gilberto Silva-Ortigoza
Hind Taud
Miguel Hernandez-Bolanos
author_facet Erik Reyes-Reyes
Benjamin Natanael Santiago-Nogales
Ramon Silva-Ortigoza
Magdalena Marciano-Melchor
Jose Rafael Garcia-Sanchez
Angel Adrian Orta-Quintana
Gilberto Silva-Ortigoza
Hind Taud
Miguel Hernandez-Bolanos
author_sort Erik Reyes-Reyes
collection DOAJ
description This research addresses the obstacle avoidance problem in wheeled mobile robots powered by renewable energy by considering all subsystems involved. A three-tier hierarchical controller is developed, integrating the technique of artificial potential fields. The proposed controller incorporates the dynamics of the three key subsystems typically found in a wheeled mobile robot: The mechanical structure, actuators, and power electronics. At the highest tier, input-output linearization is combined with artificial potential fields. The medium tier employs two controllers based on differential flatness theory, while the lowest tier incorporates sliding mode control and proportional-integral control. The effectiveness of the control strategy is experimentally validated using a differential drive-type wheeled mobile robot prototype, leveraging the TDK-Lambda G100-17 as a renewable energy emulator, along with the DS1104 board and Matlab-Simulink software. Experiments were conducted under two scenarios: a) the emulation of a commercial photovoltaic panel to simulate realistic operating conditions and b) the application of time-varying input voltages to replicate dynamic power source variations. The experimental results demonstrate the robustness of the proposed controller against sudden changes in system parameters, confirming its reliability and effectiveness.
format Article
id doaj-art-1123e221472341bcbeadd4010fee2d6f
institution Kabale University
issn 2169-3536
language English
publishDate 2024-01-01
publisher IEEE
record_format Article
series IEEE Access
spelling doaj-art-1123e221472341bcbeadd4010fee2d6f2024-12-25T00:01:40ZengIEEEIEEE Access2169-35362024-01-011219295819297810.1109/ACCESS.2024.351585210793056Three-Tiered Controller for Obstacle Avoidance in a PV Panel-Powered Wheeled Mobile Robot: Considering Actuators and Power Electronics StagesErik Reyes-Reyes0https://orcid.org/0000-0002-3759-3829Benjamin Natanael Santiago-Nogales1https://orcid.org/0009-0001-4352-8388Ramon Silva-Ortigoza2https://orcid.org/0000-0002-7540-489XMagdalena Marciano-Melchor3https://orcid.org/0000-0003-1435-6908Jose Rafael Garcia-Sanchez4https://orcid.org/0000-0001-7036-0990Angel Adrian Orta-Quintana5https://orcid.org/0000-0001-6382-2261Gilberto Silva-Ortigoza6https://orcid.org/0000-0002-3970-1969Hind Taud7https://orcid.org/0000-0002-7644-5706Miguel Hernandez-Bolanos8https://orcid.org/0000-0002-5622-8747Laboratorio de Mecatrónica y Energía Renovable, CIDETEC, Instituto Politécnico Nacional, Mexico City, MexicoLaboratorio de Mecatrónica y Energía Renovable, CIDETEC, Instituto Politécnico Nacional, Mexico City, MexicoLaboratorio de Mecatrónica y Energía Renovable, CIDETEC, Instituto Politécnico Nacional, Mexico City, MexicoLaboratorio de Mecatrónica y Energía Renovable, CIDETEC, Instituto Politécnico Nacional, Mexico City, MexicoDivisión de Ingeniería Mecatrónica, Tecnológico de Estudios Superiores de Huixquilucan, Tecnológico Nacional de México, Estado de México, MexicoLaboratorio de Mecatrónica y Energía Renovable, CIDETEC, Instituto Politécnico Nacional, Mexico City, MexicoFacultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Puebla, MexicoLaboratorio de Mecatrónica y Energía Renovable, CIDETEC, Instituto Politécnico Nacional, Mexico City, MexicoLaboratorio de Mecatrónica y Energía Renovable, CIDETEC, Instituto Politécnico Nacional, Mexico City, MexicoThis research addresses the obstacle avoidance problem in wheeled mobile robots powered by renewable energy by considering all subsystems involved. A three-tier hierarchical controller is developed, integrating the technique of artificial potential fields. The proposed controller incorporates the dynamics of the three key subsystems typically found in a wheeled mobile robot: The mechanical structure, actuators, and power electronics. At the highest tier, input-output linearization is combined with artificial potential fields. The medium tier employs two controllers based on differential flatness theory, while the lowest tier incorporates sliding mode control and proportional-integral control. The effectiveness of the control strategy is experimentally validated using a differential drive-type wheeled mobile robot prototype, leveraging the TDK-Lambda G100-17 as a renewable energy emulator, along with the DS1104 board and Matlab-Simulink software. Experiments were conducted under two scenarios: a) the emulation of a commercial photovoltaic panel to simulate realistic operating conditions and b) the application of time-varying input voltages to replicate dynamic power source variations. The experimental results demonstrate the robustness of the proposed controller against sudden changes in system parameters, confirming its reliability and effectiveness.https://ieeexplore.ieee.org/document/10793056/Artificial potential fieldsDC motorsDC/DC Buck power converterdifferential flatness controlhierarchical systemobstacle avoidance
spellingShingle Erik Reyes-Reyes
Benjamin Natanael Santiago-Nogales
Ramon Silva-Ortigoza
Magdalena Marciano-Melchor
Jose Rafael Garcia-Sanchez
Angel Adrian Orta-Quintana
Gilberto Silva-Ortigoza
Hind Taud
Miguel Hernandez-Bolanos
Three-Tiered Controller for Obstacle Avoidance in a PV Panel-Powered Wheeled Mobile Robot: Considering Actuators and Power Electronics Stages
IEEE Access
Artificial potential fields
DC motors
DC/DC Buck power converter
differential flatness control
hierarchical system
obstacle avoidance
title Three-Tiered Controller for Obstacle Avoidance in a PV Panel-Powered Wheeled Mobile Robot: Considering Actuators and Power Electronics Stages
title_full Three-Tiered Controller for Obstacle Avoidance in a PV Panel-Powered Wheeled Mobile Robot: Considering Actuators and Power Electronics Stages
title_fullStr Three-Tiered Controller for Obstacle Avoidance in a PV Panel-Powered Wheeled Mobile Robot: Considering Actuators and Power Electronics Stages
title_full_unstemmed Three-Tiered Controller for Obstacle Avoidance in a PV Panel-Powered Wheeled Mobile Robot: Considering Actuators and Power Electronics Stages
title_short Three-Tiered Controller for Obstacle Avoidance in a PV Panel-Powered Wheeled Mobile Robot: Considering Actuators and Power Electronics Stages
title_sort three tiered controller for obstacle avoidance in a pv panel powered wheeled mobile robot considering actuators and power electronics stages
topic Artificial potential fields
DC motors
DC/DC Buck power converter
differential flatness control
hierarchical system
obstacle avoidance
url https://ieeexplore.ieee.org/document/10793056/
work_keys_str_mv AT erikreyesreyes threetieredcontrollerforobstacleavoidanceinapvpanelpoweredwheeledmobilerobotconsideringactuatorsandpowerelectronicsstages
AT benjaminnatanaelsantiagonogales threetieredcontrollerforobstacleavoidanceinapvpanelpoweredwheeledmobilerobotconsideringactuatorsandpowerelectronicsstages
AT ramonsilvaortigoza threetieredcontrollerforobstacleavoidanceinapvpanelpoweredwheeledmobilerobotconsideringactuatorsandpowerelectronicsstages
AT magdalenamarcianomelchor threetieredcontrollerforobstacleavoidanceinapvpanelpoweredwheeledmobilerobotconsideringactuatorsandpowerelectronicsstages
AT joserafaelgarciasanchez threetieredcontrollerforobstacleavoidanceinapvpanelpoweredwheeledmobilerobotconsideringactuatorsandpowerelectronicsstages
AT angeladrianortaquintana threetieredcontrollerforobstacleavoidanceinapvpanelpoweredwheeledmobilerobotconsideringactuatorsandpowerelectronicsstages
AT gilbertosilvaortigoza threetieredcontrollerforobstacleavoidanceinapvpanelpoweredwheeledmobilerobotconsideringactuatorsandpowerelectronicsstages
AT hindtaud threetieredcontrollerforobstacleavoidanceinapvpanelpoweredwheeledmobilerobotconsideringactuatorsandpowerelectronicsstages
AT miguelhernandezbolanos threetieredcontrollerforobstacleavoidanceinapvpanelpoweredwheeledmobilerobotconsideringactuatorsandpowerelectronicsstages