Endovascular Localization of Aortic Injury in a Porcine Model
<italic>Goal</italic>: Non-compressible torso hemorrhage represents a category of lethal injuries in both civilian and military traumatically injured populations that with proper intervention, training, or technological advancements are survivable. Endovascular localization of active ble...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
IEEE
2025-01-01
|
| Series: | IEEE Open Journal of Engineering in Medicine and Biology |
| Subjects: | |
| Online Access: | https://ieeexplore.ieee.org/document/10947540/ |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | <italic>Goal</italic>: Non-compressible torso hemorrhage represents a category of lethal injuries in both civilian and military traumatically injured populations that with proper intervention, training, or technological advancements are survivable. Endovascular localization of active bleeding in the pre-hospital setting can allow faster, less invasive, and more accurate applications of life-saving interventions. In this paper, we report initial in vivo and in silico experimental results to test the feasibility of endovascular localization of hemorrhage. <italic>Methods:</italic> Endovascular pressure waveforms were acquired on five pigs with an induced aortic injury via a custom intra-aortic catheter instrumented with four pressure sensors. Pressure and velocity data were then simulated on an in silico human aortic model with the same kind of injury. <italic>Results:</italic> A decrease in pulse pressure across the injury (proximal to distal) reliably indicated the injury location to within a few centimeters. The simulated model showed a similar decrease in pulse pressure as well as an increase in velocity<italic>. Conclusions:</italic> With additional refinement, localization accuracy may be sufficient for application of a modern covered stent to stop bleeding. The simulated model results indicate relevance for humans and provide guidance for future experiments. |
|---|---|
| ISSN: | 2644-1276 |