Efficient Dual Domain Decoding of Linear Block Codes Using Genetic Algorithms
A computationally efficient algorithm for decoding block codes is developed using a genetic algorithm (GA). The proposed algorithm uses the dual code in contrast to the existing genetic decoders in the literature that use the code itself. Hence, this new approach reduces the complexity of decoding t...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2012-01-01
|
| Series: | Journal of Electrical and Computer Engineering |
| Online Access: | http://dx.doi.org/10.1155/2012/503834 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | A computationally efficient algorithm for decoding block codes is developed using a genetic algorithm (GA). The proposed algorithm uses the dual code in contrast to the existing genetic decoders in the literature that use the code itself. Hence, this new approach reduces the complexity of decoding the codes of high rates. We simulated our algorithm in various transmission channels. The performance of this algorithm is investigated and compared with competitor decoding algorithms including Maini and Shakeel ones. The results show that the proposed algorithm gives large gains over the Chase-2 decoding algorithm and reach the performance of the OSD-3 for some quadratic residue (QR) codes. Further, we define a new crossover operator that exploits the domain specific information and compare it with uniform and two point crossover. The complexity of this algorithm is also discussed and compared to other algorithms. |
|---|---|
| ISSN: | 2090-0147 2090-0155 |