Single exposure to near-threshold 5G millimeter wave modifies restraint stress responses in rats

Background: In response to growing concerns about the health effects of quasi-millimeter waves (qMMW) used in 5th-generation wireless systems, conservative whole-body exposure thresholds based on indirect evidence have been proposed. The guidelines define a whole-body average specific absorption rat...

Full description

Saved in:
Bibliographic Details
Main Authors: Akiko Matsumoto, Ikumi Endo, Etsuko Ijima, Akimasa Hirata, Sachiko Kodera, Masayoshi Ichiba, Mikiko Tokiya, Takashi Hikage, Hiroshi Masuda
Format: Article
Language:English
Published: Komiyama Printing Co. Ltd 2025-05-01
Series:Environmental Health and Preventive Medicine
Subjects:
Online Access:https://www.jstage.jst.go.jp/article/ehpm/30/0/30_24-00321/_html/-char/en
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background: In response to growing concerns about the health effects of quasi-millimeter waves (qMMW) used in 5th-generation wireless systems, conservative whole-body exposure thresholds based on indirect evidence have been proposed. The guidelines define a whole-body average specific absorption rate (WBA-SAR) of 4 W/kg which causes a 1 °C increase in core temperature, as the operational threshold for adverse health effects. To address the lack of direct evidence, we recently reported that a 30-minute exposure to qMMW at 4.6 W/kg resulted in a 1 °C increase in rat core temperature. Here, we further analyzed the near-threshold stress response for the first time, using biological samples from the aforementioned and additional experiments. Methods: A total of 59 young Sprague-Dawley rats (240–322 g) were exposed to 28 GHz for 40 minutes at WBA-SARs of 0, 3.7, and 7.2 W/kg, under normal (22.5 °C, 45–55% humidity), and heat (32 °C, 70% humidity) conditions. Rats were restrained in acrylic holders for dose control. We repeatedly measured serum and urinary biomarkers of stress response, aggregated the data, and analyzed them using a single statistical mixed model to subtract the effects of sham exposure and between-subject variation. Results: Sham exposure induced stress responses, suggesting an effect of restraint. After the subtraction of the sham exposure effect, 28 GHz appeared to induce stress responses as evidenced by elevated serum-free corticosterone 1 or 3 days after the exposure, which was more evident in animals with a change in rectal temperature exceeding 1 °C. Urinary-free catecholamines demonstrated an inhibitory property of 28 GHz frequency exposure on the stress response as evidenced by noradrenaline on the day of exposure. Heat exposure enhanced this effect, suggesting a possible role of noradrenaline in heat dissipation by promoting cutaneous blood flow, a notion supported by the correlation between noradrenaline levels and tail surface temperature, a critical organ for heat dissipation. Conclusions: This study is the first to demonstrate that qMMW whole-body exposure can alter the stress response as indicated by corticosterone and noradrenaline at near-threshold levels. Our findings may provide insight into the biological basis of the whole-body exposure thresholds in the international guidelines.
ISSN:1342-078X
1347-4715