Terrain Referenced Navigation Using a Multilayer Radial Basis Function-Based Extreme Learning Machine

A high-resolution digital elevation model (DEM) is an important element that determines the performance of terrain referenced navigation (TRN). However, the higher the resolution of the DEM, the bigger the memory size needed for storing it. It is difficult to secure such large memory spaces in small...

Full description

Saved in:
Bibliographic Details
Main Authors: Jungshin Lee, Changky Sung, Juhyun Oh
Format: Article
Language:English
Published: Wiley 2019-01-01
Series:International Journal of Aerospace Engineering
Online Access:http://dx.doi.org/10.1155/2019/9142694
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A high-resolution digital elevation model (DEM) is an important element that determines the performance of terrain referenced navigation (TRN). However, the higher the resolution of the DEM, the bigger the memory size needed for storing it. It is difficult to secure such large memory spaces in small, low-priced unmanned aerial vehicles. In this study, a high-precision terrain regression model to fit the DEM is generated using the extreme learning machine technique based on the multilayer radial basis function. The TRN results using the proposed method are compared with existing studies on various DEM fitting methods. This study verifies that the proposed method obtains improved fitting accuracy and TRN performance over existing DEM fitting methods such as bilinear interpolation, SVM for regression, and bi-spline neural network, without the DEM storage space.
ISSN:1687-5966
1687-5974