Negative Energy Solutions for a New Fractional px-Kirchhoff Problem without the (AR) Condition

In this paper, we investigate the following Kirchhoff type problem involving the fractional px-Laplacian operator. a−b∫Ω×Ωux−uypx,y/px,yx−yN+spx,ydxdyLu=λuqx−2u+fx,ux∈Ωu=0 x∈∂Ω,, where Ω is a bounded domain in ℝN with Lipschitz boundary, a≥b>0 are constants, px,y is a function defined on Ω¯×Ω¯, s...

Full description

Saved in:
Bibliographic Details
Main Authors: Weichun Bu, Tianqing An, Guoju Ye, Said Taarabti
Format: Article
Language:English
Published: Wiley 2021-01-01
Series:Journal of Function Spaces
Online Access:http://dx.doi.org/10.1155/2021/8888078
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832563129681182720
author Weichun Bu
Tianqing An
Guoju Ye
Said Taarabti
author_facet Weichun Bu
Tianqing An
Guoju Ye
Said Taarabti
author_sort Weichun Bu
collection DOAJ
description In this paper, we investigate the following Kirchhoff type problem involving the fractional px-Laplacian operator. a−b∫Ω×Ωux−uypx,y/px,yx−yN+spx,ydxdyLu=λuqx−2u+fx,ux∈Ωu=0 x∈∂Ω,, where Ω is a bounded domain in ℝN with Lipschitz boundary, a≥b>0 are constants, px,y is a function defined on Ω¯×Ω¯, s∈0,1, and qx>1, Lu is the fractional px-Laplacian operator, N>spx,y, for any x,y∈Ω¯×Ω¯, px∗=px,xN/N−spx,x, λ is a given positive parameter, and f is a continuous function. By using Ekeland’s variational principle and dual fountain theorem, we obtain some new existence and multiplicity of negative energy solutions for the above problem without the Ambrosetti-Rabinowitz ((AR) for short) condition.
format Article
id doaj-art-103ab518fabc46469210f511d3069566
institution Kabale University
issn 2314-8896
2314-8888
language English
publishDate 2021-01-01
publisher Wiley
record_format Article
series Journal of Function Spaces
spelling doaj-art-103ab518fabc46469210f511d30695662025-02-03T01:20:50ZengWileyJournal of Function Spaces2314-88962314-88882021-01-01202110.1155/2021/88880788888078Negative Energy Solutions for a New Fractional px-Kirchhoff Problem without the (AR) ConditionWeichun Bu0Tianqing An1Guoju Ye2Said Taarabti3College of Science, Hohai University, Nanjing 210098, ChinaCollege of Science, Hohai University, Nanjing 210098, ChinaCollege of Science, Hohai University, Nanjing 210098, ChinaLaboratory of Systems Engineering and Information Technologies, National School of Applied Sciences of Agadir, Ibn Zohr University, MoroccoIn this paper, we investigate the following Kirchhoff type problem involving the fractional px-Laplacian operator. a−b∫Ω×Ωux−uypx,y/px,yx−yN+spx,ydxdyLu=λuqx−2u+fx,ux∈Ωu=0 x∈∂Ω,, where Ω is a bounded domain in ℝN with Lipschitz boundary, a≥b>0 are constants, px,y is a function defined on Ω¯×Ω¯, s∈0,1, and qx>1, Lu is the fractional px-Laplacian operator, N>spx,y, for any x,y∈Ω¯×Ω¯, px∗=px,xN/N−spx,x, λ is a given positive parameter, and f is a continuous function. By using Ekeland’s variational principle and dual fountain theorem, we obtain some new existence and multiplicity of negative energy solutions for the above problem without the Ambrosetti-Rabinowitz ((AR) for short) condition.http://dx.doi.org/10.1155/2021/8888078
spellingShingle Weichun Bu
Tianqing An
Guoju Ye
Said Taarabti
Negative Energy Solutions for a New Fractional px-Kirchhoff Problem without the (AR) Condition
Journal of Function Spaces
title Negative Energy Solutions for a New Fractional px-Kirchhoff Problem without the (AR) Condition
title_full Negative Energy Solutions for a New Fractional px-Kirchhoff Problem without the (AR) Condition
title_fullStr Negative Energy Solutions for a New Fractional px-Kirchhoff Problem without the (AR) Condition
title_full_unstemmed Negative Energy Solutions for a New Fractional px-Kirchhoff Problem without the (AR) Condition
title_short Negative Energy Solutions for a New Fractional px-Kirchhoff Problem without the (AR) Condition
title_sort negative energy solutions for a new fractional px kirchhoff problem without the ar condition
url http://dx.doi.org/10.1155/2021/8888078
work_keys_str_mv AT weichunbu negativeenergysolutionsforanewfractionalpxkirchhoffproblemwithoutthearcondition
AT tianqingan negativeenergysolutionsforanewfractionalpxkirchhoffproblemwithoutthearcondition
AT guojuye negativeenergysolutionsforanewfractionalpxkirchhoffproblemwithoutthearcondition
AT saidtaarabti negativeenergysolutionsforanewfractionalpxkirchhoffproblemwithoutthearcondition