Negative Energy Solutions for a New Fractional px-Kirchhoff Problem without the (AR) Condition

In this paper, we investigate the following Kirchhoff type problem involving the fractional px-Laplacian operator. a−b∫Ω×Ωux−uypx,y/px,yx−yN+spx,ydxdyLu=λuqx−2u+fx,ux∈Ωu=0 x∈∂Ω,, where Ω is a bounded domain in ℝN with Lipschitz boundary, a≥b>0 are constants, px,y is a function defined on Ω¯×Ω¯, s...

Full description

Saved in:
Bibliographic Details
Main Authors: Weichun Bu, Tianqing An, Guoju Ye, Said Taarabti
Format: Article
Language:English
Published: Wiley 2021-01-01
Series:Journal of Function Spaces
Online Access:http://dx.doi.org/10.1155/2021/8888078
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we investigate the following Kirchhoff type problem involving the fractional px-Laplacian operator. a−b∫Ω×Ωux−uypx,y/px,yx−yN+spx,ydxdyLu=λuqx−2u+fx,ux∈Ωu=0 x∈∂Ω,, where Ω is a bounded domain in ℝN with Lipschitz boundary, a≥b>0 are constants, px,y is a function defined on Ω¯×Ω¯, s∈0,1, and qx>1, Lu is the fractional px-Laplacian operator, N>spx,y, for any x,y∈Ω¯×Ω¯, px∗=px,xN/N−spx,x, λ is a given positive parameter, and f is a continuous function. By using Ekeland’s variational principle and dual fountain theorem, we obtain some new existence and multiplicity of negative energy solutions for the above problem without the Ambrosetti-Rabinowitz ((AR) for short) condition.
ISSN:2314-8896
2314-8888