Non-Invasive Glucose Sensing on Fingertip Using a Mueller Matrix Polarimetry With Machine Learning

This study achieved significant predictive results using Mueller Matrix Polarimetry combined with the XGBoost algorithm for non-invasive glucose sensing of biological tissues on human fingertips. The experiment used a 660nm laser in polarimetry and incident angle optimization to enhance measurement...

Full description

Saved in:
Bibliographic Details
Main Authors: Chih-Yi Liu, Yu-Lung Lo, Wei-Chun Hung
Format: Article
Language:English
Published: IEEE 2025-01-01
Series:IEEE Photonics Journal
Subjects:
Online Access:https://ieeexplore.ieee.org/document/11018343/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study achieved significant predictive results using Mueller Matrix Polarimetry combined with the XGBoost algorithm for non-invasive glucose sensing of biological tissues on human fingertips. The experiment used a 660nm laser in polarimetry and incident angle optimization to enhance measurement capabilities, comprehensively obtaining properties including Linear Birefringence (LB), Circular Birefringence (CB), linear dichroism (LD), Circular Dichroism (CD), and Degree of Polarization (DoP). Phantom models simulated the interference properties of biological tissue polarization measurements. The XGBoost regression model, with feature engineering based on correlation matrices, showed consistent trends in both phantom and human measurements. As a result, the prediction results for glucose concentration in phantom mixtures were R&#x00B2; &#x003D; 0.96 and Mean Absolute Relative Difference (MARD) &#x003D; 8.67&#x0025;. Furthermore, the prediction of glucose concentration on human fingertips achieved R&#x00B2; of 0.89, and MARD of 2.92&#x0025; using the features: <inline-formula><tex-math notation="LaTeX">${{R}_1}$</tex-math></inline-formula>, <inline-formula><tex-math notation="LaTeX">${{m}_{32}}$</tex-math></inline-formula>, <inline-formula><tex-math notation="LaTeX">$S{{1}^{{{{45}}^\circ }}}$</tex-math></inline-formula>, <inline-formula><tex-math notation="LaTeX">$S{{2}^{{{{45}}^\circ }}}$</tex-math></inline-formula>, <inline-formula><tex-math notation="LaTeX">$S{{1}^R}$</tex-math></inline-formula>, <inline-formula><tex-math notation="LaTeX">$DoL{{P}^R}$</tex-math></inline-formula>, and <inline-formula><tex-math notation="LaTeX">${{S}_{tol}}$</tex-math></inline-formula>. It is found that for predicting human blood glucose using machine learning, CB, CD, DoP, and Total light intensity are crucial optical properties.
ISSN:1943-0655