Fractional Brownian Motion for a System of Fuzzy Fractional Stochastic Differential Equation

We study fractional Brownian motion– (FBM–) driven fuzzy stochastic fractional evolution equations. These equations can be used to model fuzziness, long-range dependence, and unpredictability in hybrid real-world systems. Under various assumptions regarding the coefficients, we investigate the exist...

Full description

Saved in:
Bibliographic Details
Main Authors: Kinda Abuasbeh, Ramsha Shafqat
Format: Article
Language:English
Published: Wiley 2022-01-01
Series:Journal of Mathematics
Online Access:http://dx.doi.org/10.1155/2022/3559035
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832549214408671232
author Kinda Abuasbeh
Ramsha Shafqat
author_facet Kinda Abuasbeh
Ramsha Shafqat
author_sort Kinda Abuasbeh
collection DOAJ
description We study fractional Brownian motion– (FBM–) driven fuzzy stochastic fractional evolution equations. These equations can be used to model fuzziness, long-range dependence, and unpredictability in hybrid real-world systems. Under various assumptions regarding the coefficients, we investigate the existence-uniqueness of the solution using an approximation method to the fractional stochastic integral. We can solve an equation with linear coefficients, for example, in financial models Application to a model of population dynamics is also illustrated. An example is propounded to show the applicability of our results.
format Article
id doaj-art-100ce93a85624104bb6c44414cb566a5
institution Kabale University
issn 2314-4785
language English
publishDate 2022-01-01
publisher Wiley
record_format Article
series Journal of Mathematics
spelling doaj-art-100ce93a85624104bb6c44414cb566a52025-02-03T06:11:52ZengWileyJournal of Mathematics2314-47852022-01-01202210.1155/2022/3559035Fractional Brownian Motion for a System of Fuzzy Fractional Stochastic Differential EquationKinda Abuasbeh0Ramsha Shafqat1Department of Mathematics and StatisticsDepartment of Mathematics and StatisticsWe study fractional Brownian motion– (FBM–) driven fuzzy stochastic fractional evolution equations. These equations can be used to model fuzziness, long-range dependence, and unpredictability in hybrid real-world systems. Under various assumptions regarding the coefficients, we investigate the existence-uniqueness of the solution using an approximation method to the fractional stochastic integral. We can solve an equation with linear coefficients, for example, in financial models Application to a model of population dynamics is also illustrated. An example is propounded to show the applicability of our results.http://dx.doi.org/10.1155/2022/3559035
spellingShingle Kinda Abuasbeh
Ramsha Shafqat
Fractional Brownian Motion for a System of Fuzzy Fractional Stochastic Differential Equation
Journal of Mathematics
title Fractional Brownian Motion for a System of Fuzzy Fractional Stochastic Differential Equation
title_full Fractional Brownian Motion for a System of Fuzzy Fractional Stochastic Differential Equation
title_fullStr Fractional Brownian Motion for a System of Fuzzy Fractional Stochastic Differential Equation
title_full_unstemmed Fractional Brownian Motion for a System of Fuzzy Fractional Stochastic Differential Equation
title_short Fractional Brownian Motion for a System of Fuzzy Fractional Stochastic Differential Equation
title_sort fractional brownian motion for a system of fuzzy fractional stochastic differential equation
url http://dx.doi.org/10.1155/2022/3559035
work_keys_str_mv AT kindaabuasbeh fractionalbrownianmotionforasystemoffuzzyfractionalstochasticdifferentialequation
AT ramshashafqat fractionalbrownianmotionforasystemoffuzzyfractionalstochasticdifferentialequation