Early life microbial succession in the gut follows common patterns in humans across the globe

Abstract Characterizing the dynamics of microbial community succession in the infant gut microbiome is crucial for understanding child health and development, but no normative model currently exists. Here, we estimate child age using gut microbial taxonomic relative abundances from metagenomes, with...

Full description

Saved in:
Bibliographic Details
Main Authors: Guilherme Fahur Bottino, Kevin S. Bonham, Fadheela Patel, Shelley McCann, Michal Zieff, Nathalia Naspolini, Daniel Ho, Theo Portlock, Raphaela Joos, Firas S. Midani, Paulo Schüroff, Anubhav Das, Inoli Shennon, Brooke C. Wilson, Justin M. O’Sullivan, Robert A. Britton, Deirdre M. Murray, Mairead E. Kiely, Carla R. Taddei, Patrícia C. B. Beltrão-Braga, Alline C. Campos, Guilherme V. Polanczyk, Curtis Huttenhower, Kirsten A. Donald, Vanja Klepac-Ceraj
Format: Article
Language:English
Published: Nature Portfolio 2025-01-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-025-56072-w
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832594529156333568
author Guilherme Fahur Bottino
Kevin S. Bonham
Fadheela Patel
Shelley McCann
Michal Zieff
Nathalia Naspolini
Daniel Ho
Theo Portlock
Raphaela Joos
Firas S. Midani
Paulo Schüroff
Anubhav Das
Inoli Shennon
Brooke C. Wilson
Justin M. O’Sullivan
Robert A. Britton
Deirdre M. Murray
Mairead E. Kiely
Carla R. Taddei
Patrícia C. B. Beltrão-Braga
Alline C. Campos
Guilherme V. Polanczyk
Curtis Huttenhower
Kirsten A. Donald
Vanja Klepac-Ceraj
author_facet Guilherme Fahur Bottino
Kevin S. Bonham
Fadheela Patel
Shelley McCann
Michal Zieff
Nathalia Naspolini
Daniel Ho
Theo Portlock
Raphaela Joos
Firas S. Midani
Paulo Schüroff
Anubhav Das
Inoli Shennon
Brooke C. Wilson
Justin M. O’Sullivan
Robert A. Britton
Deirdre M. Murray
Mairead E. Kiely
Carla R. Taddei
Patrícia C. B. Beltrão-Braga
Alline C. Campos
Guilherme V. Polanczyk
Curtis Huttenhower
Kirsten A. Donald
Vanja Klepac-Ceraj
author_sort Guilherme Fahur Bottino
collection DOAJ
description Abstract Characterizing the dynamics of microbial community succession in the infant gut microbiome is crucial for understanding child health and development, but no normative model currently exists. Here, we estimate child age using gut microbial taxonomic relative abundances from metagenomes, with high temporal resolution (±3 months) for the first 1.5 years of life. Using 3154 samples from 1827 infants across 12 countries, we trained a random forest model, achieving a root mean square error of 2.56 months. We identified key taxonomic predictors of age, including declines in Bifidobacterium spp. and increases in Faecalibacterium prausnitzii and Lachnospiraceae. Microbial succession patterns are conserved across infants from diverse human populations, suggesting universal developmental trajectories. Functional analysis confirmed trends in key microbial genes involved in feeding transitions and dietary exposures. This model provides a normative benchmark of “microbiome age” for assessing early gut maturation that may be used alongside other measures of child development.
format Article
id doaj-art-1004f8ad6f1b4a408f48630c8ce0f801
institution Kabale University
issn 2041-1723
language English
publishDate 2025-01-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj-art-1004f8ad6f1b4a408f48630c8ce0f8012025-01-19T12:30:45ZengNature PortfolioNature Communications2041-17232025-01-0116111210.1038/s41467-025-56072-wEarly life microbial succession in the gut follows common patterns in humans across the globeGuilherme Fahur Bottino0Kevin S. Bonham1Fadheela Patel2Shelley McCann3Michal Zieff4Nathalia Naspolini5Daniel Ho6Theo Portlock7Raphaela Joos8Firas S. Midani9Paulo Schüroff10Anubhav Das11Inoli Shennon12Brooke C. Wilson13Justin M. O’Sullivan14Robert A. Britton15Deirdre M. Murray16Mairead E. Kiely17Carla R. Taddei18Patrícia C. B. Beltrão-Braga19Alline C. Campos20Guilherme V. Polanczyk21Curtis Huttenhower22Kirsten A. Donald23Vanja Klepac-Ceraj24Department of Biological Sciences, Wellesley CollegeDepartment of Biological Sciences, Wellesley CollegeUniversity of Cape TownDepartment of Biological Sciences, Wellesley CollegeUniversity of Cape TownSchool of Arts, Sciences and Humanity, University of São PauloThe Liggins Institute, The University of AucklandThe Liggins Institute, The University of AucklandAPC Microbiome IrelandDepartment of Molecular Virology and Microbiology, Baylor College of MedicineSchool of Arts, Sciences and Humanity, University of São PauloAPC Microbiome IrelandThe Liggins Institute, The University of AucklandThe Liggins Institute, The University of AucklandThe Liggins Institute, The University of AucklandDepartment of Molecular Virology and Microbiology, Baylor College of MedicineINFANT Maternal and Child Health Centre, Dept of Paediatrics and Child Health, University College CorkINFANT Maternal and Child Health Centre, Dept of Paediatrics and Child Health, University College CorkMicrobiology Department, Institute of Biomedical Sciences (ICB-II), University of São PauloMicrobiology Department, Institute of Biomedical Sciences (ICB-II), University of São PauloPharmacology of Neuroplasticity Lab- Department of Pharmacology, Ribeirão Preto Medical School- University of São PauloDivision of Child & Adolescent Psychiatry, Department & Institute of Psychiatry, Faculdade de Medicina FMUSP, Universidade de São PauloDepartment of Biostatistics, Harvard T.H. Chan School of Public HealthUniversity of Cape TownDepartment of Biological Sciences, Wellesley CollegeAbstract Characterizing the dynamics of microbial community succession in the infant gut microbiome is crucial for understanding child health and development, but no normative model currently exists. Here, we estimate child age using gut microbial taxonomic relative abundances from metagenomes, with high temporal resolution (±3 months) for the first 1.5 years of life. Using 3154 samples from 1827 infants across 12 countries, we trained a random forest model, achieving a root mean square error of 2.56 months. We identified key taxonomic predictors of age, including declines in Bifidobacterium spp. and increases in Faecalibacterium prausnitzii and Lachnospiraceae. Microbial succession patterns are conserved across infants from diverse human populations, suggesting universal developmental trajectories. Functional analysis confirmed trends in key microbial genes involved in feeding transitions and dietary exposures. This model provides a normative benchmark of “microbiome age” for assessing early gut maturation that may be used alongside other measures of child development.https://doi.org/10.1038/s41467-025-56072-w
spellingShingle Guilherme Fahur Bottino
Kevin S. Bonham
Fadheela Patel
Shelley McCann
Michal Zieff
Nathalia Naspolini
Daniel Ho
Theo Portlock
Raphaela Joos
Firas S. Midani
Paulo Schüroff
Anubhav Das
Inoli Shennon
Brooke C. Wilson
Justin M. O’Sullivan
Robert A. Britton
Deirdre M. Murray
Mairead E. Kiely
Carla R. Taddei
Patrícia C. B. Beltrão-Braga
Alline C. Campos
Guilherme V. Polanczyk
Curtis Huttenhower
Kirsten A. Donald
Vanja Klepac-Ceraj
Early life microbial succession in the gut follows common patterns in humans across the globe
Nature Communications
title Early life microbial succession in the gut follows common patterns in humans across the globe
title_full Early life microbial succession in the gut follows common patterns in humans across the globe
title_fullStr Early life microbial succession in the gut follows common patterns in humans across the globe
title_full_unstemmed Early life microbial succession in the gut follows common patterns in humans across the globe
title_short Early life microbial succession in the gut follows common patterns in humans across the globe
title_sort early life microbial succession in the gut follows common patterns in humans across the globe
url https://doi.org/10.1038/s41467-025-56072-w
work_keys_str_mv AT guilhermefahurbottino earlylifemicrobialsuccessioninthegutfollowscommonpatternsinhumansacrosstheglobe
AT kevinsbonham earlylifemicrobialsuccessioninthegutfollowscommonpatternsinhumansacrosstheglobe
AT fadheelapatel earlylifemicrobialsuccessioninthegutfollowscommonpatternsinhumansacrosstheglobe
AT shelleymccann earlylifemicrobialsuccessioninthegutfollowscommonpatternsinhumansacrosstheglobe
AT michalzieff earlylifemicrobialsuccessioninthegutfollowscommonpatternsinhumansacrosstheglobe
AT nathalianaspolini earlylifemicrobialsuccessioninthegutfollowscommonpatternsinhumansacrosstheglobe
AT danielho earlylifemicrobialsuccessioninthegutfollowscommonpatternsinhumansacrosstheglobe
AT theoportlock earlylifemicrobialsuccessioninthegutfollowscommonpatternsinhumansacrosstheglobe
AT raphaelajoos earlylifemicrobialsuccessioninthegutfollowscommonpatternsinhumansacrosstheglobe
AT firassmidani earlylifemicrobialsuccessioninthegutfollowscommonpatternsinhumansacrosstheglobe
AT pauloschuroff earlylifemicrobialsuccessioninthegutfollowscommonpatternsinhumansacrosstheglobe
AT anubhavdas earlylifemicrobialsuccessioninthegutfollowscommonpatternsinhumansacrosstheglobe
AT inolishennon earlylifemicrobialsuccessioninthegutfollowscommonpatternsinhumansacrosstheglobe
AT brookecwilson earlylifemicrobialsuccessioninthegutfollowscommonpatternsinhumansacrosstheglobe
AT justinmosullivan earlylifemicrobialsuccessioninthegutfollowscommonpatternsinhumansacrosstheglobe
AT robertabritton earlylifemicrobialsuccessioninthegutfollowscommonpatternsinhumansacrosstheglobe
AT deirdremmurray earlylifemicrobialsuccessioninthegutfollowscommonpatternsinhumansacrosstheglobe
AT maireadekiely earlylifemicrobialsuccessioninthegutfollowscommonpatternsinhumansacrosstheglobe
AT carlartaddei earlylifemicrobialsuccessioninthegutfollowscommonpatternsinhumansacrosstheglobe
AT patriciacbbeltraobraga earlylifemicrobialsuccessioninthegutfollowscommonpatternsinhumansacrosstheglobe
AT allineccampos earlylifemicrobialsuccessioninthegutfollowscommonpatternsinhumansacrosstheglobe
AT guilhermevpolanczyk earlylifemicrobialsuccessioninthegutfollowscommonpatternsinhumansacrosstheglobe
AT curtishuttenhower earlylifemicrobialsuccessioninthegutfollowscommonpatternsinhumansacrosstheglobe
AT kirstenadonald earlylifemicrobialsuccessioninthegutfollowscommonpatternsinhumansacrosstheglobe
AT vanjaklepacceraj earlylifemicrobialsuccessioninthegutfollowscommonpatternsinhumansacrosstheglobe