High-Resolution Mapping of Forest Parameters in Tropical Rainforests Through AutoML Integration of GEDI With Sentinel-1/2, Landsat 8, and ALOS-2 Data

Forests are vital carbon sinks, with tree height and biomass critical for carbon research. NASA's GEDI spaceborne LiDAR enhances vegetation monitoring through 3D structure analysis. This study established relationships between GEDI products and Sentinel-1/2, Landsat 8, ALOS, and GLO-30 features...

Full description

Saved in:
Bibliographic Details
Main Authors: Bo Zhang, Li Zhang, Min Yan, Jian Zuo, Yuqi Dong, Bowei Chen
Format: Article
Language:English
Published: IEEE 2025-01-01
Series:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10924716/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850147624251817984
author Bo Zhang
Li Zhang
Min Yan
Jian Zuo
Yuqi Dong
Bowei Chen
author_facet Bo Zhang
Li Zhang
Min Yan
Jian Zuo
Yuqi Dong
Bowei Chen
author_sort Bo Zhang
collection DOAJ
description Forests are vital carbon sinks, with tree height and biomass critical for carbon research. NASA's GEDI spaceborne LiDAR enhances vegetation monitoring through 3D structure analysis. This study established relationships between GEDI products and Sentinel-1/2, Landsat 8, ALOS, and GLO-30 features using the AutoML method. We constructed a total of 432 features, primarily from 14 types of earth observation features. In a 95.56% forest-covered area, AutoML improved canopy height (FCH) and biomass (AGBD) accuracy by up to 5.25 m and 32.18 Mg/ha over other methods. Polarization interference features, especially phase, explain 20% of forest parameters, showing high stability. Wavelet and Fourier-based texture features also demonstrate strong potential. Two mapping methods are proposed: 10 m resolution (FCH <inline-formula><tex-math notation="LaTeX">$R^{2}$</tex-math></inline-formula> = 0.53, RMSE = 11.49 m; AGBD <inline-formula><tex-math notation="LaTeX">$R^{2}$</tex-math></inline-formula> = 0.53, RMSE = 133.56 Mg/ha) and 500 m resolution (FCH <inline-formula><tex-math notation="LaTeX">$R^{2}$</tex-math></inline-formula> = 0.64, RMSE = 10.06 m; AGBD <inline-formula><tex-math notation="LaTeX">$R^{2}$</tex-math></inline-formula> = 0.66, RMSE = 114.25 Mg/ha). Compared to existing maps (AGBD: <inline-formula><tex-math notation="LaTeX">$R$</tex-math></inline-formula> <inline-formula><tex-math notation="LaTeX">$&lt;$</tex-math></inline-formula> 0.1, RMSE <inline-formula><tex-math notation="LaTeX">$&gt;$</tex-math></inline-formula> 180 Mg/ha; FCH: <inline-formula><tex-math notation="LaTeX">$R &lt;$</tex-math></inline-formula> 0.2, RMSE <inline-formula><tex-math notation="LaTeX">$&gt;$</tex-math></inline-formula> 15 m), our method (AGBD <inline-formula><tex-math notation="LaTeX">$R$</tex-math></inline-formula> = 0.74, RMSE = 131.39 Mg/ha; FCH <inline-formula><tex-math notation="LaTeX">$R$</tex-math></inline-formula> = 0.73, RMSE = 11.30 m) significantly improves accuracy. The approach shows minimal saturation effects and broad applicability for forest parameter estimation.
format Article
id doaj-art-0ffa1fadd65747608ea78553d8742d6d
institution OA Journals
issn 1939-1404
2151-1535
language English
publishDate 2025-01-01
publisher IEEE
record_format Article
series IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
spelling doaj-art-0ffa1fadd65747608ea78553d8742d6d2025-08-20T02:27:31ZengIEEEIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing1939-14042151-15352025-01-01189084911810.1109/JSTARS.2025.355087810924716High-Resolution Mapping of Forest Parameters in Tropical Rainforests Through AutoML Integration of GEDI With Sentinel-1/2, Landsat 8, and ALOS-2 DataBo Zhang0https://orcid.org/0000-0002-7226-1088Li Zhang1https://orcid.org/0000-0002-5880-7507Min Yan2https://orcid.org/0000-0001-7234-1590Jian Zuo3Yuqi Dong4Bowei Chen5https://orcid.org/0000-0002-6377-1094International Research Center of Big Data for Sustainable Development Goals, Beijing, ChinaInternational Research Center of Big Data for Sustainable Development Goals, Beijing, ChinaInternational Research Center of Big Data for Sustainable Development Goals, Beijing, ChinaInternational Research Center of Big Data for Sustainable Development Goals, Beijing, ChinaInternational Research Center of Big Data for Sustainable Development Goals, Beijing, ChinaInternational Research Center of Big Data for Sustainable Development Goals, Beijing, ChinaForests are vital carbon sinks, with tree height and biomass critical for carbon research. NASA's GEDI spaceborne LiDAR enhances vegetation monitoring through 3D structure analysis. This study established relationships between GEDI products and Sentinel-1/2, Landsat 8, ALOS, and GLO-30 features using the AutoML method. We constructed a total of 432 features, primarily from 14 types of earth observation features. In a 95.56% forest-covered area, AutoML improved canopy height (FCH) and biomass (AGBD) accuracy by up to 5.25 m and 32.18 Mg/ha over other methods. Polarization interference features, especially phase, explain 20% of forest parameters, showing high stability. Wavelet and Fourier-based texture features also demonstrate strong potential. Two mapping methods are proposed: 10 m resolution (FCH <inline-formula><tex-math notation="LaTeX">$R^{2}$</tex-math></inline-formula> = 0.53, RMSE = 11.49 m; AGBD <inline-formula><tex-math notation="LaTeX">$R^{2}$</tex-math></inline-formula> = 0.53, RMSE = 133.56 Mg/ha) and 500 m resolution (FCH <inline-formula><tex-math notation="LaTeX">$R^{2}$</tex-math></inline-formula> = 0.64, RMSE = 10.06 m; AGBD <inline-formula><tex-math notation="LaTeX">$R^{2}$</tex-math></inline-formula> = 0.66, RMSE = 114.25 Mg/ha). Compared to existing maps (AGBD: <inline-formula><tex-math notation="LaTeX">$R$</tex-math></inline-formula> <inline-formula><tex-math notation="LaTeX">$&lt;$</tex-math></inline-formula> 0.1, RMSE <inline-formula><tex-math notation="LaTeX">$&gt;$</tex-math></inline-formula> 180 Mg/ha; FCH: <inline-formula><tex-math notation="LaTeX">$R &lt;$</tex-math></inline-formula> 0.2, RMSE <inline-formula><tex-math notation="LaTeX">$&gt;$</tex-math></inline-formula> 15 m), our method (AGBD <inline-formula><tex-math notation="LaTeX">$R$</tex-math></inline-formula> = 0.74, RMSE = 131.39 Mg/ha; FCH <inline-formula><tex-math notation="LaTeX">$R$</tex-math></inline-formula> = 0.73, RMSE = 11.30 m) significantly improves accuracy. The approach shows minimal saturation effects and broad applicability for forest parameter estimation.https://ieeexplore.ieee.org/document/10924716/ALOS-2 PALSAR-2forest parametersGlobal Ecosystem Dynamics Investigation (GEDI)Landsat 8Sentinel-1/2
spellingShingle Bo Zhang
Li Zhang
Min Yan
Jian Zuo
Yuqi Dong
Bowei Chen
High-Resolution Mapping of Forest Parameters in Tropical Rainforests Through AutoML Integration of GEDI With Sentinel-1/2, Landsat 8, and ALOS-2 Data
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
ALOS-2 PALSAR-2
forest parameters
Global Ecosystem Dynamics Investigation (GEDI)
Landsat 8
Sentinel-1/2
title High-Resolution Mapping of Forest Parameters in Tropical Rainforests Through AutoML Integration of GEDI With Sentinel-1/2, Landsat 8, and ALOS-2 Data
title_full High-Resolution Mapping of Forest Parameters in Tropical Rainforests Through AutoML Integration of GEDI With Sentinel-1/2, Landsat 8, and ALOS-2 Data
title_fullStr High-Resolution Mapping of Forest Parameters in Tropical Rainforests Through AutoML Integration of GEDI With Sentinel-1/2, Landsat 8, and ALOS-2 Data
title_full_unstemmed High-Resolution Mapping of Forest Parameters in Tropical Rainforests Through AutoML Integration of GEDI With Sentinel-1/2, Landsat 8, and ALOS-2 Data
title_short High-Resolution Mapping of Forest Parameters in Tropical Rainforests Through AutoML Integration of GEDI With Sentinel-1/2, Landsat 8, and ALOS-2 Data
title_sort high resolution mapping of forest parameters in tropical rainforests through automl integration of gedi with sentinel 1 2 landsat 8 and alos 2 data
topic ALOS-2 PALSAR-2
forest parameters
Global Ecosystem Dynamics Investigation (GEDI)
Landsat 8
Sentinel-1/2
url https://ieeexplore.ieee.org/document/10924716/
work_keys_str_mv AT bozhang highresolutionmappingofforestparametersintropicalrainforeststhroughautomlintegrationofgediwithsentinel12landsat8andalos2data
AT lizhang highresolutionmappingofforestparametersintropicalrainforeststhroughautomlintegrationofgediwithsentinel12landsat8andalos2data
AT minyan highresolutionmappingofforestparametersintropicalrainforeststhroughautomlintegrationofgediwithsentinel12landsat8andalos2data
AT jianzuo highresolutionmappingofforestparametersintropicalrainforeststhroughautomlintegrationofgediwithsentinel12landsat8andalos2data
AT yuqidong highresolutionmappingofforestparametersintropicalrainforeststhroughautomlintegrationofgediwithsentinel12landsat8andalos2data
AT boweichen highresolutionmappingofforestparametersintropicalrainforeststhroughautomlintegrationofgediwithsentinel12landsat8andalos2data