The Prognostic Value of Adaptive Nuclear Texture Features from Patient Gray Level Entropy Matrices in Early Stage Ovarian Cancer

Background: Nuclear texture analysis gives information about the spatial arrangement of the pixel gray levels in a digitized microscopic nuclear image, providing texture features that may be used as quantitative tools for prognosis of human cancer. The aim of the study was to evaluate the prognostic...

Full description

Saved in:
Bibliographic Details
Main Authors: Birgitte Nielsen, Fritz Albregtsen, Wanja Kildal, Vera M. Abeler, Gunnar B. Kristensen, Håvard E. Danielsen
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:Analytical Cellular Pathology
Online Access:http://dx.doi.org/10.3233/ACP-2012-0065
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832553923609624576
author Birgitte Nielsen
Fritz Albregtsen
Wanja Kildal
Vera M. Abeler
Gunnar B. Kristensen
Håvard E. Danielsen
author_facet Birgitte Nielsen
Fritz Albregtsen
Wanja Kildal
Vera M. Abeler
Gunnar B. Kristensen
Håvard E. Danielsen
author_sort Birgitte Nielsen
collection DOAJ
description Background: Nuclear texture analysis gives information about the spatial arrangement of the pixel gray levels in a digitized microscopic nuclear image, providing texture features that may be used as quantitative tools for prognosis of human cancer. The aim of the study was to evaluate the prognostic value of adaptive nuclear texture features in early stage ovarian cancer.
format Article
id doaj-art-0fe1fec05c76404c8b45096c6224e390
institution Kabale University
issn 2210-7177
2210-7185
language English
publishDate 2012-01-01
publisher Wiley
record_format Article
series Analytical Cellular Pathology
spelling doaj-art-0fe1fec05c76404c8b45096c6224e3902025-02-03T05:52:48ZengWileyAnalytical Cellular Pathology2210-71772210-71852012-01-0135430531410.3233/ACP-2012-0065The Prognostic Value of Adaptive Nuclear Texture Features from Patient Gray Level Entropy Matrices in Early Stage Ovarian CancerBirgitte Nielsen0Fritz Albregtsen1Wanja Kildal2Vera M. Abeler3Gunnar B. Kristensen4Håvard E. Danielsen5Institute for Medical Informatics, Oslo University Hospital, Oslo, NorwayInstitute for Medical Informatics, Oslo University Hospital, Oslo, NorwayInstitute for Medical Informatics, Oslo University Hospital, Oslo, NorwayDepartment of Pathology, Oslo University Hospital, Oslo, NorwayInstitute for Medical Informatics, Oslo University Hospital, Oslo, NorwayInstitute for Medical Informatics, Oslo University Hospital, Oslo, NorwayBackground: Nuclear texture analysis gives information about the spatial arrangement of the pixel gray levels in a digitized microscopic nuclear image, providing texture features that may be used as quantitative tools for prognosis of human cancer. The aim of the study was to evaluate the prognostic value of adaptive nuclear texture features in early stage ovarian cancer.http://dx.doi.org/10.3233/ACP-2012-0065
spellingShingle Birgitte Nielsen
Fritz Albregtsen
Wanja Kildal
Vera M. Abeler
Gunnar B. Kristensen
Håvard E. Danielsen
The Prognostic Value of Adaptive Nuclear Texture Features from Patient Gray Level Entropy Matrices in Early Stage Ovarian Cancer
Analytical Cellular Pathology
title The Prognostic Value of Adaptive Nuclear Texture Features from Patient Gray Level Entropy Matrices in Early Stage Ovarian Cancer
title_full The Prognostic Value of Adaptive Nuclear Texture Features from Patient Gray Level Entropy Matrices in Early Stage Ovarian Cancer
title_fullStr The Prognostic Value of Adaptive Nuclear Texture Features from Patient Gray Level Entropy Matrices in Early Stage Ovarian Cancer
title_full_unstemmed The Prognostic Value of Adaptive Nuclear Texture Features from Patient Gray Level Entropy Matrices in Early Stage Ovarian Cancer
title_short The Prognostic Value of Adaptive Nuclear Texture Features from Patient Gray Level Entropy Matrices in Early Stage Ovarian Cancer
title_sort prognostic value of adaptive nuclear texture features from patient gray level entropy matrices in early stage ovarian cancer
url http://dx.doi.org/10.3233/ACP-2012-0065
work_keys_str_mv AT birgittenielsen theprognosticvalueofadaptivenucleartexturefeaturesfrompatientgraylevelentropymatricesinearlystageovariancancer
AT fritzalbregtsen theprognosticvalueofadaptivenucleartexturefeaturesfrompatientgraylevelentropymatricesinearlystageovariancancer
AT wanjakildal theprognosticvalueofadaptivenucleartexturefeaturesfrompatientgraylevelentropymatricesinearlystageovariancancer
AT veramabeler theprognosticvalueofadaptivenucleartexturefeaturesfrompatientgraylevelentropymatricesinearlystageovariancancer
AT gunnarbkristensen theprognosticvalueofadaptivenucleartexturefeaturesfrompatientgraylevelentropymatricesinearlystageovariancancer
AT havardedanielsen theprognosticvalueofadaptivenucleartexturefeaturesfrompatientgraylevelentropymatricesinearlystageovariancancer
AT birgittenielsen prognosticvalueofadaptivenucleartexturefeaturesfrompatientgraylevelentropymatricesinearlystageovariancancer
AT fritzalbregtsen prognosticvalueofadaptivenucleartexturefeaturesfrompatientgraylevelentropymatricesinearlystageovariancancer
AT wanjakildal prognosticvalueofadaptivenucleartexturefeaturesfrompatientgraylevelentropymatricesinearlystageovariancancer
AT veramabeler prognosticvalueofadaptivenucleartexturefeaturesfrompatientgraylevelentropymatricesinearlystageovariancancer
AT gunnarbkristensen prognosticvalueofadaptivenucleartexturefeaturesfrompatientgraylevelentropymatricesinearlystageovariancancer
AT havardedanielsen prognosticvalueofadaptivenucleartexturefeaturesfrompatientgraylevelentropymatricesinearlystageovariancancer