Autonomous Orbit Determination of LLO Satellite Using DRO–LLO Links and Lunar Laser Ranging
A stable and high-precision autonomous orbit determination scheme for a Low Lunar Orbit (LLO) spacecraft is proposed, leveraging satellite-to-satellite tracking (SST) measurement data and lunar laser ranging data. One satellite orbits around the LLO, while the other satellite orbits around the Dista...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-06-01
|
| Series: | Aerospace |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2226-4310/12/7/576 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | A stable and high-precision autonomous orbit determination scheme for a Low Lunar Orbit (LLO) spacecraft is proposed, leveraging satellite-to-satellite tracking (SST) measurement data and lunar laser ranging data. One satellite orbits around the LLO, while the other satellite orbits around the Distant Retrograde Orbit (DRO). An inter-satellite ranging link is established between the two satellites, while the LLO satellite conducts laser ranging with a Corner Cube Reflector (CCR) on the lunar surface. Both inter-satellite ranging data and lunar laser ranging data are acquired through measurements. By integrating these data with orbital dynamics and employing the Extended Kalman Filter (EKF) method, the position and velocity states of the two formation satellites are estimated. This orbit determination scheme operates independently of ground measurement and control stations, achieving a high degree of autonomy. Simulation results demonstrate that the position accuracy of the LLO satellite can reach 0.1 m, and that of the DRO satellite can reach 10 m. Compared to the autonomous orbit determination scheme relying solely on SST measurement data, this proposed scheme exhibits several advantages, including shorter convergence time, higher convergence accuracy, and enhanced robustness of the navigation system against initial orbit errors and orbital dynamic model errors. It can provide a valuable engineering reference for the autonomous navigation of lunar-orbiting satellites. |
|---|---|
| ISSN: | 2226-4310 |