The signature of a monomial ideal

The irreducible decomposition of a monomial ideal has played an important role in combinatorial commutative algebra, with applications beyond pure mathematics, such as biology. Given a monomial ideal $ I $ of a polynomial ring $ S = k[{\bf x}] $ over a field $ k $ and variables $ {\bf x} = \{x_1, \l...

Full description

Saved in:
Bibliographic Details
Main Authors: Jovanny Ibarguen, Daniel S. Moran, Carlos E. Valencia, Rafael H. Villarreal
Format: Article
Language:English
Published: AIMS Press 2024-09-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.20241357?viewType=HTML
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850214971659517952
author Jovanny Ibarguen
Daniel S. Moran
Carlos E. Valencia
Rafael H. Villarreal
author_facet Jovanny Ibarguen
Daniel S. Moran
Carlos E. Valencia
Rafael H. Villarreal
author_sort Jovanny Ibarguen
collection DOAJ
description The irreducible decomposition of a monomial ideal has played an important role in combinatorial commutative algebra, with applications beyond pure mathematics, such as biology. Given a monomial ideal $ I $ of a polynomial ring $ S = k[{\bf x}] $ over a field $ k $ and variables $ {\bf x} = \{x_1, \ldots, x_n\} $, its incidence matrix, is the matrix whose rows are indexed by the variables $ {\bf x} $ and whose columns are indexed by its minimal generators. The main contribution of this paper is the introduction of a novel invariant of a monomial ideal $ I $, termed its signature, which could be thought of as a type of canonical form of its incidence matrix, and the proof that two monomial ideals with the same signature have essentially the same irreducible decomposition.
format Article
id doaj-art-0fca4fb5d360455380929acee24f42aa
institution OA Journals
issn 2473-6988
language English
publishDate 2024-09-01
publisher AIMS Press
record_format Article
series AIMS Mathematics
spelling doaj-art-0fca4fb5d360455380929acee24f42aa2025-08-20T02:08:44ZengAIMS PressAIMS Mathematics2473-69882024-09-01910279552797810.3934/math.20241357The signature of a monomial idealJovanny Ibarguen0Daniel S. Moran1Carlos E. Valencia2Rafael H. Villarreal3Departamento de Matemáticas, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 14–740, 07000, MéxicoDepartamento de Matemáticas, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 14–740, 07000, MéxicoDepartamento de Matemáticas, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 14–740, 07000, MéxicoDepartamento de Matemáticas, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 14–740, 07000, MéxicoThe irreducible decomposition of a monomial ideal has played an important role in combinatorial commutative algebra, with applications beyond pure mathematics, such as biology. Given a monomial ideal $ I $ of a polynomial ring $ S = k[{\bf x}] $ over a field $ k $ and variables $ {\bf x} = \{x_1, \ldots, x_n\} $, its incidence matrix, is the matrix whose rows are indexed by the variables $ {\bf x} $ and whose columns are indexed by its minimal generators. The main contribution of this paper is the introduction of a novel invariant of a monomial ideal $ I $, termed its signature, which could be thought of as a type of canonical form of its incidence matrix, and the proof that two monomial ideals with the same signature have essentially the same irreducible decomposition.https://www.aimspress.com/article/doi/10.3934/math.20241357?viewType=HTMLirreducible decompositionmonomial idealsignatureincidence matrixregular sequencesminimal free resolution
spellingShingle Jovanny Ibarguen
Daniel S. Moran
Carlos E. Valencia
Rafael H. Villarreal
The signature of a monomial ideal
AIMS Mathematics
irreducible decomposition
monomial ideal
signature
incidence matrix
regular sequences
minimal free resolution
title The signature of a monomial ideal
title_full The signature of a monomial ideal
title_fullStr The signature of a monomial ideal
title_full_unstemmed The signature of a monomial ideal
title_short The signature of a monomial ideal
title_sort signature of a monomial ideal
topic irreducible decomposition
monomial ideal
signature
incidence matrix
regular sequences
minimal free resolution
url https://www.aimspress.com/article/doi/10.3934/math.20241357?viewType=HTML
work_keys_str_mv AT jovannyibarguen thesignatureofamonomialideal
AT danielsmoran thesignatureofamonomialideal
AT carlosevalencia thesignatureofamonomialideal
AT rafaelhvillarreal thesignatureofamonomialideal
AT jovannyibarguen signatureofamonomialideal
AT danielsmoran signatureofamonomialideal
AT carlosevalencia signatureofamonomialideal
AT rafaelhvillarreal signatureofamonomialideal