Diophantine Equation Generated by the Subfield of a Circular Field

Two forms f (x, y, z) and g(x, y, z) of degree 3 were constructed, with their values being the norms of numbers in the subfields of degree 3 of the circular fields K13 and K19 , respectively. Using the decomposition law in a circular field, Diophantine equations f (x, y, z) = a and g(x, y, z) = b , whe...

Full description

Saved in:
Bibliographic Details
Main Authors: I. G. Galyautdinov, E. E. Lavrentyeva
Format: Article
Language:English
Published: Kazan Federal University 2024-07-01
Series:Учёные записки Казанского университета: Серия Физико-математические науки
Subjects:
Online Access:https://uzakufismat.elpub.ru/jour/article/view/66
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832542992932536320
author I. G. Galyautdinov
E. E. Lavrentyeva
author_facet I. G. Galyautdinov
E. E. Lavrentyeva
author_sort I. G. Galyautdinov
collection DOAJ
description Two forms f (x, y, z) and g(x, y, z) of degree 3 were constructed, with their values being the norms of numbers in the subfields of degree 3 of the circular fields K13 and K19 , respectively. Using the decomposition law in a circular field, Diophantine equations f (x, y, z) = a and g(x, y, z) = b , where a, b ∈ Z, a 6= 0, b 6= 0 were solved. The assertions that, based on the canonical decomposition of the numbers a and b into prime factors, make it possible to determine whether the equations f (x, y, z) = a and g(x, y, z) = b have solutions were proved.
format Article
id doaj-art-0fb8a9f010f740ffa697845423bbc71b
institution Kabale University
issn 2541-7746
2500-2198
language English
publishDate 2024-07-01
publisher Kazan Federal University
record_format Article
series Учёные записки Казанского университета: Серия Физико-математические науки
spelling doaj-art-0fb8a9f010f740ffa697845423bbc71b2025-02-03T12:00:35ZengKazan Federal UniversityУчёные записки Казанского университета: Серия Физико-математические науки2541-77462500-21982024-07-01166214716110.26907/2541-7746.2024.2.147-16140Diophantine Equation Generated by the Subfield of a Circular FieldI. G. Galyautdinov0E. E. Lavrentyeva1Kazan Federal UniversityKazan Federal UniversityTwo forms f (x, y, z) and g(x, y, z) of degree 3 were constructed, with their values being the norms of numbers in the subfields of degree 3 of the circular fields K13 and K19 , respectively. Using the decomposition law in a circular field, Diophantine equations f (x, y, z) = a and g(x, y, z) = b , where a, b ∈ Z, a 6= 0, b 6= 0 were solved. The assertions that, based on the canonical decomposition of the numbers a and b into prime factors, make it possible to determine whether the equations f (x, y, z) = a and g(x, y, z) = b have solutions were proved.https://uzakufismat.elpub.ru/jour/article/view/66algebraic integergalois groupnorm of algebraic numberprincipal idealfundamental basisdecomposition law in circular fielddiophantine equation
spellingShingle I. G. Galyautdinov
E. E. Lavrentyeva
Diophantine Equation Generated by the Subfield of a Circular Field
Учёные записки Казанского университета: Серия Физико-математические науки
algebraic integer
galois group
norm of algebraic number
principal ideal
fundamental basis
decomposition law in circular field
diophantine equation
title Diophantine Equation Generated by the Subfield of a Circular Field
title_full Diophantine Equation Generated by the Subfield of a Circular Field
title_fullStr Diophantine Equation Generated by the Subfield of a Circular Field
title_full_unstemmed Diophantine Equation Generated by the Subfield of a Circular Field
title_short Diophantine Equation Generated by the Subfield of a Circular Field
title_sort diophantine equation generated by the subfield of a circular field
topic algebraic integer
galois group
norm of algebraic number
principal ideal
fundamental basis
decomposition law in circular field
diophantine equation
url https://uzakufismat.elpub.ru/jour/article/view/66
work_keys_str_mv AT iggalyautdinov diophantineequationgeneratedbythesubfieldofacircularfield
AT eelavrentyeva diophantineequationgeneratedbythesubfieldofacircularfield