Modeling of Conventional Heat Pipes with Capillary Wicks: A Review

Conventional heat pipes (CHPs) with capillary wicks are fundamental in various engineering applications due to their exceptional heat transfer efficiency and minimal temperature gradients. Despite the recent advancements in heat pipe modeling, existing reviews predominantly emphasize loop or pulsati...

Full description

Saved in:
Bibliographic Details
Main Authors: Roberta Caruana, Manfredo Guilizzoni
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/18/9/2213
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850137673233072128
author Roberta Caruana
Manfredo Guilizzoni
author_facet Roberta Caruana
Manfredo Guilizzoni
author_sort Roberta Caruana
collection DOAJ
description Conventional heat pipes (CHPs) with capillary wicks are fundamental in various engineering applications due to their exceptional heat transfer efficiency and minimal temperature gradients. Despite the recent advancements in heat pipe modeling, existing reviews predominantly emphasize loop or pulsating heat pipes, neglecting the extensive application and design challenges associated with CHPs. This review aims to address this lack by providing a comprehensive analysis of existing modeling techniques for CHPs, with a specific focus on their methodological innovations, validation strategies, and limitations, in order to outline a structured classification of models and provide useful suggestions for future research. The main findings of this work reveal a predominance of numerical lumped parameter models, which balance simplicity and computational efficiency, but often oversimplify complex phenomena. In fact, although numerical 2D and 3D models could offer greater accuracy at higher computational costs, they often share similar limitations with lumped parameter models. Additionally, some crucial aspects, including gravitational effects, real gas behavior in vapor modeling, activation effects, and operating limits, remain underexplored. Therefore, future research should address these gaps, to enhance the applicability of CHPs across different fields and operating conditions. In particular, an integrated approach is recommended, combining physics-based models with data-driven techniques, and supported by a robust and systematic experimental validation strategy, to ensure the reliability and generality of the developed models. Such modeling efforts are expected to guide the development of more effective and reliable heat pipe designs.
format Article
id doaj-art-0fb3146a4e4842ccafde0855f78e51b8
institution OA Journals
issn 1996-1073
language English
publishDate 2025-04-01
publisher MDPI AG
record_format Article
series Energies
spelling doaj-art-0fb3146a4e4842ccafde0855f78e51b82025-08-20T02:30:46ZengMDPI AGEnergies1996-10732025-04-01189221310.3390/en18092213Modeling of Conventional Heat Pipes with Capillary Wicks: A ReviewRoberta Caruana0Manfredo Guilizzoni1Department of Energy, Politecnico di Milano, Via Lambruschini 4, 20156 Milan, ItalyDepartment of Energy, Politecnico di Milano, Via Lambruschini 4, 20156 Milan, ItalyConventional heat pipes (CHPs) with capillary wicks are fundamental in various engineering applications due to their exceptional heat transfer efficiency and minimal temperature gradients. Despite the recent advancements in heat pipe modeling, existing reviews predominantly emphasize loop or pulsating heat pipes, neglecting the extensive application and design challenges associated with CHPs. This review aims to address this lack by providing a comprehensive analysis of existing modeling techniques for CHPs, with a specific focus on their methodological innovations, validation strategies, and limitations, in order to outline a structured classification of models and provide useful suggestions for future research. The main findings of this work reveal a predominance of numerical lumped parameter models, which balance simplicity and computational efficiency, but often oversimplify complex phenomena. In fact, although numerical 2D and 3D models could offer greater accuracy at higher computational costs, they often share similar limitations with lumped parameter models. Additionally, some crucial aspects, including gravitational effects, real gas behavior in vapor modeling, activation effects, and operating limits, remain underexplored. Therefore, future research should address these gaps, to enhance the applicability of CHPs across different fields and operating conditions. In particular, an integrated approach is recommended, combining physics-based models with data-driven techniques, and supported by a robust and systematic experimental validation strategy, to ensure the reliability and generality of the developed models. Such modeling efforts are expected to guide the development of more effective and reliable heat pipe designs.https://www.mdpi.com/1996-1073/18/9/2213heat pipeheat transfercapillary wickanalytical modelinglumped parameter modelingnumerical simulation
spellingShingle Roberta Caruana
Manfredo Guilizzoni
Modeling of Conventional Heat Pipes with Capillary Wicks: A Review
Energies
heat pipe
heat transfer
capillary wick
analytical modeling
lumped parameter modeling
numerical simulation
title Modeling of Conventional Heat Pipes with Capillary Wicks: A Review
title_full Modeling of Conventional Heat Pipes with Capillary Wicks: A Review
title_fullStr Modeling of Conventional Heat Pipes with Capillary Wicks: A Review
title_full_unstemmed Modeling of Conventional Heat Pipes with Capillary Wicks: A Review
title_short Modeling of Conventional Heat Pipes with Capillary Wicks: A Review
title_sort modeling of conventional heat pipes with capillary wicks a review
topic heat pipe
heat transfer
capillary wick
analytical modeling
lumped parameter modeling
numerical simulation
url https://www.mdpi.com/1996-1073/18/9/2213
work_keys_str_mv AT robertacaruana modelingofconventionalheatpipeswithcapillarywicksareview
AT manfredoguilizzoni modelingofconventionalheatpipeswithcapillarywicksareview