Action of left identity on n-skew commuting 3-additive mappings

In this paper, our aim is to prove the following result: consider a given integer [Formula: see text], and let [Formula: see text] be a [Formula: see text] torsion free ring possessing a left multiplicative identity e. If [Formula: see text] is a symmetric 3-additive map and [Formula: see text] is t...

Full description

Saved in:
Bibliographic Details
Main Authors: Suad Alrehaili, Faiza Shujat, Abu Zaid Ansari
Format: Article
Language:English
Published: World Scientific Publishing 2025-01-01
Series:Mathematics Open
Subjects:
Online Access:https://www.worldscientific.com/doi/10.1142/S2811007224500081
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832546376393687040
author Suad Alrehaili
Faiza Shujat
Abu Zaid Ansari
author_facet Suad Alrehaili
Faiza Shujat
Abu Zaid Ansari
author_sort Suad Alrehaili
collection DOAJ
description In this paper, our aim is to prove the following result: consider a given integer [Formula: see text], and let [Formula: see text] be a [Formula: see text] torsion free ring possessing a left multiplicative identity e. If [Formula: see text] is a symmetric 3-additive map and [Formula: see text] is the trace of [Formula: see text] such that [Formula: see text] is n-skew commuting on [Formula: see text], then [Formula: see text].
format Article
id doaj-art-0f4641adcbb7419688f153eb5d97054c
institution Kabale University
issn 2811-0072
language English
publishDate 2025-01-01
publisher World Scientific Publishing
record_format Article
series Mathematics Open
spelling doaj-art-0f4641adcbb7419688f153eb5d97054c2025-02-03T07:04:29ZengWorld Scientific PublishingMathematics Open2811-00722025-01-010410.1142/S2811007224500081Action of left identity on n-skew commuting 3-additive mappingsSuad Alrehaili0Faiza Shujat1Abu Zaid Ansari2Department of Mathematics, Faculty of Science, Taibah University, Madinah, Kingdom of Saudi ArabiaDepartment of Mathematics, Faculty of Science, Taibah University, Madinah, Kingdom of Saudi ArabiaDepartment of Mathematics, Faculty of Science, Islamic University of Madinah, Kingdom of Saudi ArabiaIn this paper, our aim is to prove the following result: consider a given integer [Formula: see text], and let [Formula: see text] be a [Formula: see text] torsion free ring possessing a left multiplicative identity e. If [Formula: see text] is a symmetric 3-additive map and [Formula: see text] is the trace of [Formula: see text] such that [Formula: see text] is n-skew commuting on [Formula: see text], then [Formula: see text].https://www.worldscientific.com/doi/10.1142/S2811007224500081Prime ringleft identityn-skew commuting3-additive mappings
spellingShingle Suad Alrehaili
Faiza Shujat
Abu Zaid Ansari
Action of left identity on n-skew commuting 3-additive mappings
Mathematics Open
Prime ring
left identity
n-skew commuting
3-additive mappings
title Action of left identity on n-skew commuting 3-additive mappings
title_full Action of left identity on n-skew commuting 3-additive mappings
title_fullStr Action of left identity on n-skew commuting 3-additive mappings
title_full_unstemmed Action of left identity on n-skew commuting 3-additive mappings
title_short Action of left identity on n-skew commuting 3-additive mappings
title_sort action of left identity on n skew commuting 3 additive mappings
topic Prime ring
left identity
n-skew commuting
3-additive mappings
url https://www.worldscientific.com/doi/10.1142/S2811007224500081
work_keys_str_mv AT suadalrehaili actionofleftidentityonnskewcommuting3additivemappings
AT faizashujat actionofleftidentityonnskewcommuting3additivemappings
AT abuzaidansari actionofleftidentityonnskewcommuting3additivemappings