Filter-Assisted Self-Coherent Detection Field Recovery Scheme for Dual-Polarization Complex-Valued Double-Sideband Signals
In this paper, we have proposed a filter-assisted self-coherent detection (FASCD) scheme that reconstructs the optical field of a dual-polarization complex-valued double-sideband (DP-CV-DSB) signal. At the receiver, the carrier is extracted using an optical bandpass filter (OBPF), and a pair of orth...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-04-01
|
| Series: | Photonics |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2304-6732/12/4/343 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this paper, we have proposed a filter-assisted self-coherent detection (FASCD) scheme that reconstructs the optical field of a dual-polarization complex-valued double-sideband (DP-CV-DSB) signal. At the receiver, the carrier is extracted using an optical bandpass filter (OBPF), and a pair of orthogonal carriers is constructed to achieve polarization-division multiplexing (PDM) by a Faraday rotator mirror (FRM). To address the issue of polarization crosstalk, channel estimation is performed using the least squares (LS) method, and the estimation results are further optimized through the intra-symbol frequency-domain averaging (ISFA) method. We demonstrate the system architecture and algorithms by simulation on a 224 Gbit/s 16-ary quadrature amplitude modulation DSB-PDM-OFDM system. The system performance is improved by 1 dB using the ISFA method. |
|---|---|
| ISSN: | 2304-6732 |