On the growth of the spectral measure
We are concerned with the asymptotics of the spectral measure associated with a self-adjoint operator. By using comparison techniques we shall show that the eigenfunctionals of L2 are close to the eigenfunctionals L1 if and only if dΓ1≈dΓ2 as λ→∞.
Saved in:
| Main Author: | A. Boumenir |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
1997-01-01
|
| Series: | International Journal of Mathematics and Mathematical Sciences |
| Subjects: | |
| Online Access: | http://dx.doi.org/10.1155/S0161171297000641 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
SPECTRAL EXPANSION FOR SINGULAR BETA STURM-LIOUVILLE PROBLEMS
by: Bilender P. Allahverdiev, et al.
Published: (2024-12-01) -
Sturm-Liouville problems with nonlinear dependence on the spectral parameter in the boundary conditions
by: Ayşe Kabataş
Published: (2025-08-01) -
Reconstruction of the potential in the Sturm-Liouville equation with spectral boundary conditions
by: Yasser Khalili, et al.
Published: (2025-08-01) -
On the Solution of a Class of Discontinuous Sturm-Liouville Problems
by: Döne Karahan, et al.
Published: (2025-03-01) -
Computational of the eigenvalues of the fractional Sturm-Liouville problem
by: M. Jafari, et al.
Published: (2025-06-01)