Improved Mixture Cure Model Using Machine Learning Approaches

The mixture cure model has been widely used in medicine, public health, and bioinformatics. The traditional mixture cure model has limitations in model flexibility and handling complex structured data and big data. In recent years, some improved new methods have been developed. Through a literature...

Full description

Saved in:
Bibliographic Details
Main Authors: Huina Wang, Tian Feng, Baosheng Liang
Format: Article
Language:English
Published: MDPI AG 2025-02-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/4/557
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The mixture cure model has been widely used in medicine, public health, and bioinformatics. The traditional mixture cure model has limitations in model flexibility and handling complex structured data and big data. In recent years, some improved new methods have been developed. Through a literature review and numerical studies, this article discusses the advantages and disadvantages of the progressions of mixture cure models incorporating machine learning techniques such as SVMs for model improvements. Machine learning algorithms have advantages in model flexibility and computation. When combined with mixture cure models, they can effectively improve the performance of mixture cure models, distinguish between susceptible and non-susceptible individuals, and accurately predict the influencing factors and their magnitude of incidence and latency.
ISSN:2227-7390