The road to commercial success for neuromorphic technologies

Abstract Neuromorphic technologies adapt biological neural principles to synthesise high-efficiency computational devices, characterised by continuous real-time operation and sparse event-based communication. After several false starts, a confluence of advances now promises widespread commercial ado...

Full description

Saved in:
Bibliographic Details
Main Authors: Dylan Richard Muir, Sadique Sheik
Format: Article
Language:English
Published: Nature Portfolio 2025-04-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-025-57352-1
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850145086155784192
author Dylan Richard Muir
Sadique Sheik
author_facet Dylan Richard Muir
Sadique Sheik
author_sort Dylan Richard Muir
collection DOAJ
description Abstract Neuromorphic technologies adapt biological neural principles to synthesise high-efficiency computational devices, characterised by continuous real-time operation and sparse event-based communication. After several false starts, a confluence of advances now promises widespread commercial adoption. Gradient-based training of deep spiking neural networks is now an off-the-shelf technique for building general-purpose Neuromorphic applications, with open-source tools underwritten by theoretical results. Analog and mixed-signal Neuromorphic circuit designs are being replaced by digital equivalents in newer devices, simplifying application deployment while maintaining computational benefits. Designs for in-memory computing are also approaching commercial maturity. Solving two key problems—how to program general Neuromorphic applications; and how to deploy them at scale—clears the way to commercial success of Neuromorphic processors. Ultra-low-power Neuromorphic technology will find a home in battery-powered systems, local compute for internet-of-things devices, and consumer wearables. Inspiration from uptake of tensor processors and GPUs can help the field overcome remaining hurdles.
format Article
id doaj-art-0ed5d817fbaf4c9aa25282d532ae4d4f
institution OA Journals
issn 2041-1723
language English
publishDate 2025-04-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj-art-0ed5d817fbaf4c9aa25282d532ae4d4f2025-08-20T02:28:10ZengNature PortfolioNature Communications2041-17232025-04-0116111210.1038/s41467-025-57352-1The road to commercial success for neuromorphic technologiesDylan Richard Muir0Sadique Sheik1SynSenseSynSenseAbstract Neuromorphic technologies adapt biological neural principles to synthesise high-efficiency computational devices, characterised by continuous real-time operation and sparse event-based communication. After several false starts, a confluence of advances now promises widespread commercial adoption. Gradient-based training of deep spiking neural networks is now an off-the-shelf technique for building general-purpose Neuromorphic applications, with open-source tools underwritten by theoretical results. Analog and mixed-signal Neuromorphic circuit designs are being replaced by digital equivalents in newer devices, simplifying application deployment while maintaining computational benefits. Designs for in-memory computing are also approaching commercial maturity. Solving two key problems—how to program general Neuromorphic applications; and how to deploy them at scale—clears the way to commercial success of Neuromorphic processors. Ultra-low-power Neuromorphic technology will find a home in battery-powered systems, local compute for internet-of-things devices, and consumer wearables. Inspiration from uptake of tensor processors and GPUs can help the field overcome remaining hurdles.https://doi.org/10.1038/s41467-025-57352-1
spellingShingle Dylan Richard Muir
Sadique Sheik
The road to commercial success for neuromorphic technologies
Nature Communications
title The road to commercial success for neuromorphic technologies
title_full The road to commercial success for neuromorphic technologies
title_fullStr The road to commercial success for neuromorphic technologies
title_full_unstemmed The road to commercial success for neuromorphic technologies
title_short The road to commercial success for neuromorphic technologies
title_sort road to commercial success for neuromorphic technologies
url https://doi.org/10.1038/s41467-025-57352-1
work_keys_str_mv AT dylanrichardmuir theroadtocommercialsuccessforneuromorphictechnologies
AT sadiquesheik theroadtocommercialsuccessforneuromorphictechnologies
AT dylanrichardmuir roadtocommercialsuccessforneuromorphictechnologies
AT sadiquesheik roadtocommercialsuccessforneuromorphictechnologies