A Quantum-like Approach to Semantic Text Classification

In this work, we conduct a sentiment analysis of English-language reviews using a quantum-like (wave-based) model of text representation. This model is explored as an alternative to machine learning (ML) techniques for text classification and analysis tasks. Special attention is given to the problem...

Full description

Saved in:
Bibliographic Details
Main Authors: Anastasia S. Gruzdeva, Rodion N. Iurev, Igor A. Bessmertny, Andrei Y. Khrennikov, Alexander P. Alodjants
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/27/7/767
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849734107924267008
author Anastasia S. Gruzdeva
Rodion N. Iurev
Igor A. Bessmertny
Andrei Y. Khrennikov
Alexander P. Alodjants
author_facet Anastasia S. Gruzdeva
Rodion N. Iurev
Igor A. Bessmertny
Andrei Y. Khrennikov
Alexander P. Alodjants
author_sort Anastasia S. Gruzdeva
collection DOAJ
description In this work, we conduct a sentiment analysis of English-language reviews using a quantum-like (wave-based) model of text representation. This model is explored as an alternative to machine learning (ML) techniques for text classification and analysis tasks. Special attention is given to the problem of segmenting text into semantic units, and we illustrate how the choice of segmentation algorithm is influenced by the structure of the language. We investigate the impact of quantum-like semantic interference on classification accuracy and compare the results with those obtained using classical probabilistic methods. Our findings show that accounting for interference effects improves accuracy by approximately <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>15</mn><mo>%</mo></mrow></semantics></math></inline-formula>. We also explore methods for reducing the computational cost of algorithms based on the wave model of text representation. The results demonstrate that the quantum-like model can serve as a viable alternative or complement to traditional ML approaches. The model achieves classification precision and recall scores of around 0.8. Furthermore, the classification algorithm is readily amenable to optimization: the proposed procedure reduces the estimated computational complexity from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><mo>(</mo><msup><mi>n</mi><mn>2</mn></msup><mo>)</mo></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow></semantics></math></inline-formula>.
format Article
id doaj-art-0eb3347e3de34f3589618173f6139b6f
institution DOAJ
issn 1099-4300
language English
publishDate 2025-07-01
publisher MDPI AG
record_format Article
series Entropy
spelling doaj-art-0eb3347e3de34f3589618173f6139b6f2025-08-20T03:07:54ZengMDPI AGEntropy1099-43002025-07-0127776710.3390/e27070767A Quantum-like Approach to Semantic Text ClassificationAnastasia S. Gruzdeva0Rodion N. Iurev1Igor A. Bessmertny2Andrei Y. Khrennikov3Alexander P. Alodjants4National Center for Cognitive Research, National Research University for Information Technology, Mechanics and Optics (ITMO), St. Petersburg 197101, RussiaFaculty of Software Engineering and Computer Systems, National Research University for Information Technology, Mechanics and Optics (ITMO), St. Petersburg 197101, RussiaFaculty of Software Engineering and Computer Systems, National Research University for Information Technology, Mechanics and Optics (ITMO), St. Petersburg 197101, RussiaInternational Center for Mathematical Modeling in Physics, Engineering, Economics and Cognitive Science, Linnaeus University, S-35195 Vaxjo-Kalmar, SwedenNational Center for Cognitive Research, National Research University for Information Technology, Mechanics and Optics (ITMO), St. Petersburg 197101, RussiaIn this work, we conduct a sentiment analysis of English-language reviews using a quantum-like (wave-based) model of text representation. This model is explored as an alternative to machine learning (ML) techniques for text classification and analysis tasks. Special attention is given to the problem of segmenting text into semantic units, and we illustrate how the choice of segmentation algorithm is influenced by the structure of the language. We investigate the impact of quantum-like semantic interference on classification accuracy and compare the results with those obtained using classical probabilistic methods. Our findings show that accounting for interference effects improves accuracy by approximately <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>15</mn><mo>%</mo></mrow></semantics></math></inline-formula>. We also explore methods for reducing the computational cost of algorithms based on the wave model of text representation. The results demonstrate that the quantum-like model can serve as a viable alternative or complement to traditional ML approaches. The model achieves classification precision and recall scores of around 0.8. Furthermore, the classification algorithm is readily amenable to optimization: the proposed procedure reduces the estimated computational complexity from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><mo>(</mo><msup><mi>n</mi><mn>2</mn></msup><mo>)</mo></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow></semantics></math></inline-formula>.https://www.mdpi.com/1099-4300/27/7/767quantum-like heuristic algorithmstext classificationsentiment analysisinterferencevector-space language model
spellingShingle Anastasia S. Gruzdeva
Rodion N. Iurev
Igor A. Bessmertny
Andrei Y. Khrennikov
Alexander P. Alodjants
A Quantum-like Approach to Semantic Text Classification
Entropy
quantum-like heuristic algorithms
text classification
sentiment analysis
interference
vector-space language model
title A Quantum-like Approach to Semantic Text Classification
title_full A Quantum-like Approach to Semantic Text Classification
title_fullStr A Quantum-like Approach to Semantic Text Classification
title_full_unstemmed A Quantum-like Approach to Semantic Text Classification
title_short A Quantum-like Approach to Semantic Text Classification
title_sort quantum like approach to semantic text classification
topic quantum-like heuristic algorithms
text classification
sentiment analysis
interference
vector-space language model
url https://www.mdpi.com/1099-4300/27/7/767
work_keys_str_mv AT anastasiasgruzdeva aquantumlikeapproachtosemantictextclassification
AT rodionniurev aquantumlikeapproachtosemantictextclassification
AT igorabessmertny aquantumlikeapproachtosemantictextclassification
AT andreiykhrennikov aquantumlikeapproachtosemantictextclassification
AT alexanderpalodjants aquantumlikeapproachtosemantictextclassification
AT anastasiasgruzdeva quantumlikeapproachtosemantictextclassification
AT rodionniurev quantumlikeapproachtosemantictextclassification
AT igorabessmertny quantumlikeapproachtosemantictextclassification
AT andreiykhrennikov quantumlikeapproachtosemantictextclassification
AT alexanderpalodjants quantumlikeapproachtosemantictextclassification