Large language model trained on clinical oncology data predicts cancer progression

Abstract Subspecialty knowledge barriers have limited the adoption of large language models (LLMs) in oncology. We introduce Woollie, an open-source, oncology-specific LLM trained on real-world data from Memorial Sloan Kettering Cancer Center (MSK) across lung, breast, prostate, pancreatic, and colo...

Full description

Saved in:
Bibliographic Details
Main Authors: Menglei Zhu, Hui Lin, Jue Jiang, Abbas J. Jinia, Justin Jee, Karl Pichotta, Michele Waters, Doori Rose, Nikolaus Schultz, Sulov Chalise, Lohit Valleru, Olivier Morin, Jean Moran, Joseph O. Deasy, Shirin Pilai, Chelsea Nichols, Gregory Riely, Lior Z. Braunstein, Anyi Li
Format: Article
Language:English
Published: Nature Portfolio 2025-07-01
Series:npj Digital Medicine
Online Access:https://doi.org/10.1038/s41746-025-01780-2
Tags: Add Tag
No Tags, Be the first to tag this record!