Large language model trained on clinical oncology data predicts cancer progression

Abstract Subspecialty knowledge barriers have limited the adoption of large language models (LLMs) in oncology. We introduce Woollie, an open-source, oncology-specific LLM trained on real-world data from Memorial Sloan Kettering Cancer Center (MSK) across lung, breast, prostate, pancreatic, and colo...

Full description

Saved in:
Bibliographic Details
Main Authors: Menglei Zhu, Hui Lin, Jue Jiang, Abbas J. Jinia, Justin Jee, Karl Pichotta, Michele Waters, Doori Rose, Nikolaus Schultz, Sulov Chalise, Lohit Valleru, Olivier Morin, Jean Moran, Joseph O. Deasy, Shirin Pilai, Chelsea Nichols, Gregory Riely, Lior Z. Braunstein, Anyi Li
Format: Article
Language:English
Published: Nature Portfolio 2025-07-01
Series:npj Digital Medicine
Online Access:https://doi.org/10.1038/s41746-025-01780-2
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849389305530679296
author Menglei Zhu
Hui Lin
Jue Jiang
Abbas J. Jinia
Justin Jee
Karl Pichotta
Michele Waters
Doori Rose
Nikolaus Schultz
Sulov Chalise
Lohit Valleru
Olivier Morin
Jean Moran
Joseph O. Deasy
Shirin Pilai
Chelsea Nichols
Gregory Riely
Lior Z. Braunstein
Anyi Li
author_facet Menglei Zhu
Hui Lin
Jue Jiang
Abbas J. Jinia
Justin Jee
Karl Pichotta
Michele Waters
Doori Rose
Nikolaus Schultz
Sulov Chalise
Lohit Valleru
Olivier Morin
Jean Moran
Joseph O. Deasy
Shirin Pilai
Chelsea Nichols
Gregory Riely
Lior Z. Braunstein
Anyi Li
author_sort Menglei Zhu
collection DOAJ
description Abstract Subspecialty knowledge barriers have limited the adoption of large language models (LLMs) in oncology. We introduce Woollie, an open-source, oncology-specific LLM trained on real-world data from Memorial Sloan Kettering Cancer Center (MSK) across lung, breast, prostate, pancreatic, and colorectal cancers, with external validation using University of California, San Francisco (UCSF) data. Woollie surpasses ChatGPT in medical benchmarks and excels in eight non-medical benchmarks. Analyzing 39,319 radiology impression notes from 4002 patients, it achieved an overall area under the receiver operating characteristic curve (AUROC) of 0.97 for cancer progression prediction on MSK data, including a notable 0.98 AUROC for pancreatic cancer. On UCSF data, it achieved an overall AUROC of 0.88, excelling in lung cancer detection with an AUROC of 0.95. As the first oncology specific LLM validated across institutions, Woollie demonstrates high accuracy and consistency across cancer types, underscoring its potential to enhance cancer progression analysis.
format Article
id doaj-art-0e81809abeba4f61bc8491f0afda3d43
institution Kabale University
issn 2398-6352
language English
publishDate 2025-07-01
publisher Nature Portfolio
record_format Article
series npj Digital Medicine
spelling doaj-art-0e81809abeba4f61bc8491f0afda3d432025-08-20T03:42:00ZengNature Portfolionpj Digital Medicine2398-63522025-07-018111510.1038/s41746-025-01780-2Large language model trained on clinical oncology data predicts cancer progressionMenglei Zhu0Hui Lin1Jue Jiang2Abbas J. Jinia3Justin Jee4Karl Pichotta5Michele Waters6Doori Rose7Nikolaus Schultz8Sulov Chalise9Lohit Valleru10Olivier Morin11Jean Moran12Joseph O. Deasy13Shirin Pilai14Chelsea Nichols15Gregory Riely16Lior Z. Braunstein17Anyi Li18Memorial Sloan Kettering Cancer CenterUniversity of California San FranciscoMemorial Sloan Kettering Cancer CenterMemorial Sloan Kettering Cancer CenterMemorial Sloan Kettering Cancer CenterMemorial Sloan Kettering Cancer CenterMemorial Sloan Kettering Cancer CenterMemorial Sloan Kettering Cancer CenterMemorial Sloan Kettering Cancer CenterMemorial Sloan Kettering Cancer CenterMemorial Sloan Kettering Cancer CenterUniversity of California San FranciscoMemorial Sloan Kettering Cancer CenterMemorial Sloan Kettering Cancer CenterMemorial Sloan Kettering Cancer CenterMemorial Sloan Kettering Cancer CenterMemorial Sloan Kettering Cancer CenterMemorial Sloan Kettering Cancer CenterMemorial Sloan Kettering Cancer CenterAbstract Subspecialty knowledge barriers have limited the adoption of large language models (LLMs) in oncology. We introduce Woollie, an open-source, oncology-specific LLM trained on real-world data from Memorial Sloan Kettering Cancer Center (MSK) across lung, breast, prostate, pancreatic, and colorectal cancers, with external validation using University of California, San Francisco (UCSF) data. Woollie surpasses ChatGPT in medical benchmarks and excels in eight non-medical benchmarks. Analyzing 39,319 radiology impression notes from 4002 patients, it achieved an overall area under the receiver operating characteristic curve (AUROC) of 0.97 for cancer progression prediction on MSK data, including a notable 0.98 AUROC for pancreatic cancer. On UCSF data, it achieved an overall AUROC of 0.88, excelling in lung cancer detection with an AUROC of 0.95. As the first oncology specific LLM validated across institutions, Woollie demonstrates high accuracy and consistency across cancer types, underscoring its potential to enhance cancer progression analysis.https://doi.org/10.1038/s41746-025-01780-2
spellingShingle Menglei Zhu
Hui Lin
Jue Jiang
Abbas J. Jinia
Justin Jee
Karl Pichotta
Michele Waters
Doori Rose
Nikolaus Schultz
Sulov Chalise
Lohit Valleru
Olivier Morin
Jean Moran
Joseph O. Deasy
Shirin Pilai
Chelsea Nichols
Gregory Riely
Lior Z. Braunstein
Anyi Li
Large language model trained on clinical oncology data predicts cancer progression
npj Digital Medicine
title Large language model trained on clinical oncology data predicts cancer progression
title_full Large language model trained on clinical oncology data predicts cancer progression
title_fullStr Large language model trained on clinical oncology data predicts cancer progression
title_full_unstemmed Large language model trained on clinical oncology data predicts cancer progression
title_short Large language model trained on clinical oncology data predicts cancer progression
title_sort large language model trained on clinical oncology data predicts cancer progression
url https://doi.org/10.1038/s41746-025-01780-2
work_keys_str_mv AT mengleizhu largelanguagemodeltrainedonclinicaloncologydatapredictscancerprogression
AT huilin largelanguagemodeltrainedonclinicaloncologydatapredictscancerprogression
AT juejiang largelanguagemodeltrainedonclinicaloncologydatapredictscancerprogression
AT abbasjjinia largelanguagemodeltrainedonclinicaloncologydatapredictscancerprogression
AT justinjee largelanguagemodeltrainedonclinicaloncologydatapredictscancerprogression
AT karlpichotta largelanguagemodeltrainedonclinicaloncologydatapredictscancerprogression
AT michelewaters largelanguagemodeltrainedonclinicaloncologydatapredictscancerprogression
AT doorirose largelanguagemodeltrainedonclinicaloncologydatapredictscancerprogression
AT nikolausschultz largelanguagemodeltrainedonclinicaloncologydatapredictscancerprogression
AT sulovchalise largelanguagemodeltrainedonclinicaloncologydatapredictscancerprogression
AT lohitvalleru largelanguagemodeltrainedonclinicaloncologydatapredictscancerprogression
AT oliviermorin largelanguagemodeltrainedonclinicaloncologydatapredictscancerprogression
AT jeanmoran largelanguagemodeltrainedonclinicaloncologydatapredictscancerprogression
AT josephodeasy largelanguagemodeltrainedonclinicaloncologydatapredictscancerprogression
AT shirinpilai largelanguagemodeltrainedonclinicaloncologydatapredictscancerprogression
AT chelseanichols largelanguagemodeltrainedonclinicaloncologydatapredictscancerprogression
AT gregoryriely largelanguagemodeltrainedonclinicaloncologydatapredictscancerprogression
AT liorzbraunstein largelanguagemodeltrainedonclinicaloncologydatapredictscancerprogression
AT anyili largelanguagemodeltrainedonclinicaloncologydatapredictscancerprogression