Determination of surfaces in three-dimensional Minkowski and Euclidean spaces based on solutions of the Sinh-Laplace equation

The relationship between solutions of the sinh-Laplace equation and the determination of various kinds of surfaces of constant Gaussian curvature, both positive and negative, will be investigated here. It is shown that when the metric is given in a particular set of coordinates, the Gaussian curvatu...

Full description

Saved in:
Bibliographic Details
Main Author: Paul Bracken
Format: Article
Language:English
Published: Wiley 2005-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/IJMMS.2005.1393
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The relationship between solutions of the sinh-Laplace equation and the determination of various kinds of surfaces of constant Gaussian curvature, both positive and negative, will be investigated here. It is shown that when the metric is given in a particular set of coordinates, the Gaussian curvature is related to the sinh-Laplace equation in a direct way. The fundamental equations of surface theory are found to yield a type of geometrically based Lax pair for the system. Given a particular solution of the sinh-Laplace equation, this Lax can be integrated to determine the three fundamental vectors related to the surface. These are also used to determine the coordinate vector of the surface. Some specific examples of this procedure will be given.
ISSN:0161-1712
1687-0425