Semi-supervised prediction of protein fitness for data-driven protein engineering
Abstract Protein fitness prediction plays a crucial role in the advancement of protein engineering endeavours. However, the combinatorial complexity of the protein sequence space and the limited availability of assay-labelled data hinder the efficient optimization of protein properties. Data-driven...
Saved in:
| Main Authors: | Alicia Olivares-Gil, José A. Barbero-Aparicio, Juan J. Rodríguez, José F. Díez-Pastor, César García-Osorio, Mehdi D. Davari |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
BMC
2025-05-01
|
| Series: | Journal of Cheminformatics |
| Subjects: | |
| Online Access: | https://doi.org/10.1186/s13321-025-01029-w |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Semi-supervised Fault Diagnosis of Refrigeration System Based on Tri-Training
by: Ren Zhengxiong, et al.
Published: (2022-01-01) -
Separated and Independent Contrastive Semi-Supervised Learning for Imbalanced Datasets
by: Dongyoung Kim, et al.
Published: (2025-01-01) -
PC-Match: Semi-Supervised Learning With Progressive Contrastive and Consistency Regularization
by: Mikyung Kang, et al.
Published: (2025-01-01) -
DRCO: Dense-Label Refinement and Cross Optimization for Semi-Supervised Object Detection
by: Yunlong Qin, et al.
Published: (2025-01-01) -
An in-depth exploration of supervised and semi-supervised learning on face recognition
by: Purnawansyah, et al.
Published: (2025-06-01)