On Harmonic Univalent Functions Defined by Dziok-Srivastava Operator

The purpose of this work is to present a class of harmonic univalent functions defined by the Dziok-Srivastava operator. Some geometric properties like coefficients conditions, distortion theorem, convolution (Hadamard product), convex combination and extreme points are investigated. 2000 Mathema...

Full description

Saved in:
Bibliographic Details
Main Authors: Mays S. Abdul Ameer, Abdul Rahman S. Juma, Raheam A. Al-Saphory
Format: Article
Language:English
Published: Tikrit University 2022-12-01
Series:Tikrit Journal of Pure Science
Subjects:
Online Access:https://tjpsj.org/index.php/tjps/article/view/110
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849320916443463680
author Mays S. Abdul Ameer
Abdul Rahman S. Juma
Raheam A. Al-Saphory
author_facet Mays S. Abdul Ameer
Abdul Rahman S. Juma
Raheam A. Al-Saphory
author_sort Mays S. Abdul Ameer
collection DOAJ
description The purpose of this work is to present a class of harmonic univalent functions defined by the Dziok-Srivastava operator. Some geometric properties like coefficients conditions, distortion theorem, convolution (Hadamard product), convex combination and extreme points are investigated. 2000 Mathematics Subject Classification: 30C45, 30C50
format Article
id doaj-art-0de5e4fc231c4d608e93623e76e8d948
institution Kabale University
issn 1813-1662
2415-1726
language English
publishDate 2022-12-01
publisher Tikrit University
record_format Article
series Tikrit Journal of Pure Science
spelling doaj-art-0de5e4fc231c4d608e93623e76e8d9482025-08-20T03:49:55ZengTikrit UniversityTikrit Journal of Pure Science1813-16622415-17262022-12-0126110.25130/tjps.v26i1.110On Harmonic Univalent Functions Defined by Dziok-Srivastava OperatorMays S. Abdul AmeerAbdul Rahman S. JumaRaheam A. Al-Saphory The purpose of this work is to present a class of harmonic univalent functions defined by the Dziok-Srivastava operator. Some geometric properties like coefficients conditions, distortion theorem, convolution (Hadamard product), convex combination and extreme points are investigated. 2000 Mathematics Subject Classification: 30C45, 30C50 https://tjpsj.org/index.php/tjps/article/view/110Distortion theoremDziok-Srivastava operatorHadamard productHarmonic functionsUnivalent functions
spellingShingle Mays S. Abdul Ameer
Abdul Rahman S. Juma
Raheam A. Al-Saphory
On Harmonic Univalent Functions Defined by Dziok-Srivastava Operator
Tikrit Journal of Pure Science
Distortion theorem
Dziok-Srivastava operator
Hadamard product
Harmonic functions
Univalent functions
title On Harmonic Univalent Functions Defined by Dziok-Srivastava Operator
title_full On Harmonic Univalent Functions Defined by Dziok-Srivastava Operator
title_fullStr On Harmonic Univalent Functions Defined by Dziok-Srivastava Operator
title_full_unstemmed On Harmonic Univalent Functions Defined by Dziok-Srivastava Operator
title_short On Harmonic Univalent Functions Defined by Dziok-Srivastava Operator
title_sort on harmonic univalent functions defined by dziok srivastava operator
topic Distortion theorem
Dziok-Srivastava operator
Hadamard product
Harmonic functions
Univalent functions
url https://tjpsj.org/index.php/tjps/article/view/110
work_keys_str_mv AT mayssabdulameer onharmonicunivalentfunctionsdefinedbydzioksrivastavaoperator
AT abdulrahmansjuma onharmonicunivalentfunctionsdefinedbydzioksrivastavaoperator
AT raheamaalsaphory onharmonicunivalentfunctionsdefinedbydzioksrivastavaoperator