Enhancing Network Slicing Architectures With Machine Learning, Security, Sustainability and Experimental Networks Integration

Network Slicing (NS) is an essential technique extensively used in 5G networks computing strategies, mobile edge computing, mobile cloud computing, and verticals like the Internet of Vehicles and industrial IoT, among others. NS is foreseen as one of the leading enablers for 6G futuristic and highly...

Full description

Saved in:
Bibliographic Details
Main Authors: Joberto S. B. Martins, Tereza C. Carvalho, Rodrigo Moreira, Cristiano Bonato Both, Adnei Donatti, Joao H. Correa, Jose A. Suruagy, Sand L. Correa, Antonio J. G. Abelem, Moises R. N. Ribeiro, Jose-Marcos S. Nogueira, Luiz C. S. Magalhaes, Juliano Wickboldt, Tiago C. Ferreto, Ricardo Mello, Rafael Pasquini, Marcos Schwarz, Leobino N. Sampaio, Daniel F. Macedo, Jose F. De Rezende, Kleber V. Cardoso, Flavio De Oliveira Silva
Format: Article
Language:English
Published: IEEE 2023-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10173493/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849247930649673728
author Joberto S. B. Martins
Tereza C. Carvalho
Rodrigo Moreira
Cristiano Bonato Both
Adnei Donatti
Joao H. Correa
Jose A. Suruagy
Sand L. Correa
Antonio J. G. Abelem
Moises R. N. Ribeiro
Jose-Marcos S. Nogueira
Luiz C. S. Magalhaes
Juliano Wickboldt
Tiago C. Ferreto
Ricardo Mello
Rafael Pasquini
Marcos Schwarz
Leobino N. Sampaio
Daniel F. Macedo
Jose F. De Rezende
Kleber V. Cardoso
Flavio De Oliveira Silva
author_facet Joberto S. B. Martins
Tereza C. Carvalho
Rodrigo Moreira
Cristiano Bonato Both
Adnei Donatti
Joao H. Correa
Jose A. Suruagy
Sand L. Correa
Antonio J. G. Abelem
Moises R. N. Ribeiro
Jose-Marcos S. Nogueira
Luiz C. S. Magalhaes
Juliano Wickboldt
Tiago C. Ferreto
Ricardo Mello
Rafael Pasquini
Marcos Schwarz
Leobino N. Sampaio
Daniel F. Macedo
Jose F. De Rezende
Kleber V. Cardoso
Flavio De Oliveira Silva
author_sort Joberto S. B. Martins
collection DOAJ
description Network Slicing (NS) is an essential technique extensively used in 5G networks computing strategies, mobile edge computing, mobile cloud computing, and verticals like the Internet of Vehicles and industrial IoT, among others. NS is foreseen as one of the leading enablers for 6G futuristic and highly demanding applications since it allows the optimization and customization of scarce and disputed resources among dynamic, demanding clients with highly distinct application requirements. Various standardization organizations, like 3GPP’s proposal for new generation networks and state-of-the-art 5G/6G research projects, are proposing new NS architectures. However, new NS architectures have to deal with an extensive range of requirements that inherently result in having NS architecture proposals typically fulfilling the needs of specific sets of domains with commonalities. The Slicing Future Internet Infrastructures (SFI2) architecture proposal explores the gap resulting from the diversity of NS architectures target domains by proposing a new NS reference architecture with a defined focus on integrating experimental networks and enhancing the NS architecture with Machine Learning (ML) native optimizations, energy-efficient slicing, and slicing-tailored security functionalities. The SFI2 architectural main contribution includes the utilization of the slice-as-a-service paradigm for end-to-end orchestration of resources across multi-domains and multi-technology experimental networks. In addition, the SFI2 reference architecture instantiations will enhance the multi-domain and multi-technology integrated experimental network deployment with native ML optimization, energy-efficient aware slicing, and slicing-tailored security functionalities for the practical domain.
format Article
id doaj-art-0dcd0c86ff05406f9d12aa39c8a05151
institution Kabale University
issn 2169-3536
language English
publishDate 2023-01-01
publisher IEEE
record_format Article
series IEEE Access
spelling doaj-art-0dcd0c86ff05406f9d12aa39c8a051512025-08-20T03:58:06ZengIEEEIEEE Access2169-35362023-01-0111691446916310.1109/ACCESS.2023.329278810173493Enhancing Network Slicing Architectures With Machine Learning, Security, Sustainability and Experimental Networks IntegrationJoberto S. B. Martins0https://orcid.org/0000-0003-1310-9366Tereza C. Carvalho1https://orcid.org/0000-0002-0821-0614Rodrigo Moreira2https://orcid.org/0000-0002-9328-8618Cristiano Bonato Both3https://orcid.org/0000-0002-9776-4888Adnei Donatti4https://orcid.org/0000-0002-4085-9640Joao H. Correa5https://orcid.org/0000-0002-8124-8985Jose A. Suruagy6https://orcid.org/0000-0001-7157-5045Sand L. Correa7https://orcid.org/0000-0003-1863-4661Antonio J. G. Abelem8https://orcid.org/0000-0003-4085-6674Moises R. N. Ribeiro9https://orcid.org/0000-0002-9149-2391Jose-Marcos S. Nogueira10https://orcid.org/0000-0002-1095-6714Luiz C. S. Magalhaes11https://orcid.org/0000-0002-1651-3156Juliano Wickboldt12https://orcid.org/0000-0002-7686-8370Tiago C. Ferreto13https://orcid.org/0000-0001-8485-529XRicardo Mello14https://orcid.org/0000-0003-0420-4273Rafael Pasquini15https://orcid.org/0000-0002-8781-3914Marcos Schwarz16https://orcid.org/0000-0002-3461-3548Leobino N. Sampaio17https://orcid.org/0000-0003-4855-0936Daniel F. Macedo18https://orcid.org/0000-0001-6668-4175Jose F. De Rezende19https://orcid.org/0000-0002-5660-6488Kleber V. Cardoso20https://orcid.org/0000-0001-5152-5323Flavio De Oliveira Silva21https://orcid.org/0000-0001-7051-7396Computer Science Department, Universidade Salvador (UNIFACS), Salvador, BrazilComputer Engineering and Digital Systems Department, Universidade de São Paulo (USP), São Paulo, BrazilInstitute of Exact and Technological Sciences, Universidade Federal de Viçosa (UFV), Viçosa, BrazilUniversidade Federal do Vale dos Sinos (UNISINOS), PPGCA, Porto Alegre, BrazilComputer Engineering and Digital Systems Department, Universidade de São Paulo (USP), São Paulo, BrazilUniversidade Federal do Ceará (UFC), Fortaleza, BrazilInformatics Center, Universidade Federal de Pernambuco (UFPE), Recife, BrazilInstitute of Informatics, Universidade Federal de Goiás (UFG), Goiania, BrazilComputer Science Department, Universidade Federal do Pará (UFPA), Belém, BrazilElectrical Engineering Department, Universidade Federal do Espírito Santos (UFES), Vitória, BrazilComputer Science Department, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, BrazilTelecommunications Engineering Department, Universidade Federal Fluminense (UFF), Niteroi, BrazilInstitute of Informatics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, BrazilSchool of Technology, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, BrazilElectrical Engineering Department, Universidade Federal do Espírito Santos (UFES), Vitória, BrazilFaculty of Computing, Universidade Federal de Uberlândia (UFU), Uberlândia, BrazilResearch, Development and Innovation Directory, Rede Nacional de Pesquisa (RNP), Rio de Janeiro, BrazilComputer Science Department, Universidade Federal da Bahia (UFBA), Salvador, BrazilComputer Science Department, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, BrazilSystems and Computer Engineering Program, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, BrazilInstitute of Informatics, Universidade Federal de Goiás (UFG), Goiania, BrazilFaculty of Computing, Universidade Federal de Uberlândia (UFU), Uberlândia, BrazilNetwork Slicing (NS) is an essential technique extensively used in 5G networks computing strategies, mobile edge computing, mobile cloud computing, and verticals like the Internet of Vehicles and industrial IoT, among others. NS is foreseen as one of the leading enablers for 6G futuristic and highly demanding applications since it allows the optimization and customization of scarce and disputed resources among dynamic, demanding clients with highly distinct application requirements. Various standardization organizations, like 3GPP’s proposal for new generation networks and state-of-the-art 5G/6G research projects, are proposing new NS architectures. However, new NS architectures have to deal with an extensive range of requirements that inherently result in having NS architecture proposals typically fulfilling the needs of specific sets of domains with commonalities. The Slicing Future Internet Infrastructures (SFI2) architecture proposal explores the gap resulting from the diversity of NS architectures target domains by proposing a new NS reference architecture with a defined focus on integrating experimental networks and enhancing the NS architecture with Machine Learning (ML) native optimizations, energy-efficient slicing, and slicing-tailored security functionalities. The SFI2 architectural main contribution includes the utilization of the slice-as-a-service paradigm for end-to-end orchestration of resources across multi-domains and multi-technology experimental networks. In addition, the SFI2 reference architecture instantiations will enhance the multi-domain and multi-technology integrated experimental network deployment with native ML optimization, energy-efficient aware slicing, and slicing-tailored security functionalities for the practical domain.https://ieeexplore.ieee.org/document/10173493/Network slicingnetwork slicing architectureexperimental networks integrationarchitectural slicing enhancementsML-native optimizationenergy-efficient slicing
spellingShingle Joberto S. B. Martins
Tereza C. Carvalho
Rodrigo Moreira
Cristiano Bonato Both
Adnei Donatti
Joao H. Correa
Jose A. Suruagy
Sand L. Correa
Antonio J. G. Abelem
Moises R. N. Ribeiro
Jose-Marcos S. Nogueira
Luiz C. S. Magalhaes
Juliano Wickboldt
Tiago C. Ferreto
Ricardo Mello
Rafael Pasquini
Marcos Schwarz
Leobino N. Sampaio
Daniel F. Macedo
Jose F. De Rezende
Kleber V. Cardoso
Flavio De Oliveira Silva
Enhancing Network Slicing Architectures With Machine Learning, Security, Sustainability and Experimental Networks Integration
IEEE Access
Network slicing
network slicing architecture
experimental networks integration
architectural slicing enhancements
ML-native optimization
energy-efficient slicing
title Enhancing Network Slicing Architectures With Machine Learning, Security, Sustainability and Experimental Networks Integration
title_full Enhancing Network Slicing Architectures With Machine Learning, Security, Sustainability and Experimental Networks Integration
title_fullStr Enhancing Network Slicing Architectures With Machine Learning, Security, Sustainability and Experimental Networks Integration
title_full_unstemmed Enhancing Network Slicing Architectures With Machine Learning, Security, Sustainability and Experimental Networks Integration
title_short Enhancing Network Slicing Architectures With Machine Learning, Security, Sustainability and Experimental Networks Integration
title_sort enhancing network slicing architectures with machine learning security sustainability and experimental networks integration
topic Network slicing
network slicing architecture
experimental networks integration
architectural slicing enhancements
ML-native optimization
energy-efficient slicing
url https://ieeexplore.ieee.org/document/10173493/
work_keys_str_mv AT jobertosbmartins enhancingnetworkslicingarchitectureswithmachinelearningsecuritysustainabilityandexperimentalnetworksintegration
AT terezaccarvalho enhancingnetworkslicingarchitectureswithmachinelearningsecuritysustainabilityandexperimentalnetworksintegration
AT rodrigomoreira enhancingnetworkslicingarchitectureswithmachinelearningsecuritysustainabilityandexperimentalnetworksintegration
AT cristianobonatoboth enhancingnetworkslicingarchitectureswithmachinelearningsecuritysustainabilityandexperimentalnetworksintegration
AT adneidonatti enhancingnetworkslicingarchitectureswithmachinelearningsecuritysustainabilityandexperimentalnetworksintegration
AT joaohcorrea enhancingnetworkslicingarchitectureswithmachinelearningsecuritysustainabilityandexperimentalnetworksintegration
AT joseasuruagy enhancingnetworkslicingarchitectureswithmachinelearningsecuritysustainabilityandexperimentalnetworksintegration
AT sandlcorrea enhancingnetworkslicingarchitectureswithmachinelearningsecuritysustainabilityandexperimentalnetworksintegration
AT antoniojgabelem enhancingnetworkslicingarchitectureswithmachinelearningsecuritysustainabilityandexperimentalnetworksintegration
AT moisesrnribeiro enhancingnetworkslicingarchitectureswithmachinelearningsecuritysustainabilityandexperimentalnetworksintegration
AT josemarcossnogueira enhancingnetworkslicingarchitectureswithmachinelearningsecuritysustainabilityandexperimentalnetworksintegration
AT luizcsmagalhaes enhancingnetworkslicingarchitectureswithmachinelearningsecuritysustainabilityandexperimentalnetworksintegration
AT julianowickboldt enhancingnetworkslicingarchitectureswithmachinelearningsecuritysustainabilityandexperimentalnetworksintegration
AT tiagocferreto enhancingnetworkslicingarchitectureswithmachinelearningsecuritysustainabilityandexperimentalnetworksintegration
AT ricardomello enhancingnetworkslicingarchitectureswithmachinelearningsecuritysustainabilityandexperimentalnetworksintegration
AT rafaelpasquini enhancingnetworkslicingarchitectureswithmachinelearningsecuritysustainabilityandexperimentalnetworksintegration
AT marcosschwarz enhancingnetworkslicingarchitectureswithmachinelearningsecuritysustainabilityandexperimentalnetworksintegration
AT leobinonsampaio enhancingnetworkslicingarchitectureswithmachinelearningsecuritysustainabilityandexperimentalnetworksintegration
AT danielfmacedo enhancingnetworkslicingarchitectureswithmachinelearningsecuritysustainabilityandexperimentalnetworksintegration
AT josefderezende enhancingnetworkslicingarchitectureswithmachinelearningsecuritysustainabilityandexperimentalnetworksintegration
AT klebervcardoso enhancingnetworkslicingarchitectureswithmachinelearningsecuritysustainabilityandexperimentalnetworksintegration
AT flaviodeoliveirasilva enhancingnetworkslicingarchitectureswithmachinelearningsecuritysustainabilityandexperimentalnetworksintegration