Trace Operator’s Range Characterization for Sobolev Spaces on Lipschitz Domains of $\protect \mathbb{R}^2$
We give, first, two new applications related to the range characterization of the range of trace operator in $H^2(\Omega )$. After this, we characterize the range of trace operator in the Sobolev spaces $ W^{3,p}(\Omega )$ when $\Omega $ is a connected bounded domain $\mathbb{R}^2$ with Lipschitz-co...
Saved in:
Main Authors: | Aibèche, Aissa, Amrouche, Cherif, Bahouli, Bassem |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2023-03-01
|
Series: | Comptes Rendus. Mathématique |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.407/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Inner Functions in Lipschitz, Besov, and Sobolev Spaces
by: Daniel Girela, et al.
Published: (2011-01-01) -
Elliptic equations in $ \mathbb{R}^2 $ involving supercritical exponential growth
by: Yony Raúl Santaria Leuyacc
Published: (2024-09-01) -
Counterexamples to F. Morel’s conjecture on $\protect \pi _0^{\protect \mathbb{A}^1}$
by: Ayoub, Joseph
Published: (2023-10-01) -
Sobolev cohomology for locally polycylindrical domains
by: Patrick W. Darko
Published: (2002-01-01) -
Uniform boundedness of $ (SL_2(\mathbb{C}))^{n} $ and $ (PSL_2(\mathbb{C}))^{n} $
by: Fawaz Aseeri
Published: (2024-11-01)