Lump Solutions of a Nonlinear PDE Combining with a New Fourth-Order Term Dx2Dt2∗
A nonlinear PDE combining with a new fourth-order term Dx2Dt2 is studied. Adding three new fourth-order derivative terms and some second-order derivative terms, we formulate a combined fourth-order nonlinear partial differential equation, which possesses a Hirota’s bilinear form. The class of lump s...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2020-01-01
|
| Series: | Advances in Mathematical Physics |
| Online Access: | http://dx.doi.org/10.1155/2020/3542320 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | A nonlinear PDE combining with a new fourth-order term Dx2Dt2 is studied. Adding three new fourth-order derivative terms and some second-order derivative terms, we formulate a combined fourth-order nonlinear partial differential equation, which possesses a Hirota’s bilinear form. The class of lump solutions is constructed explicitly through Hirota’s bilinear method. Their dynamical behaviors are analyzed through plots. |
|---|---|
| ISSN: | 1687-9120 1687-9139 |