N-Beats architecture for explainable forecasting of multi-dimensional poultry data.

The agricultural economy heavily relies on poultry production, making accurate forecasting of poultry data crucial for optimizing revenue, streamlining resource utilization, and maximizing productivity. This research introduces a novel application of the N-BEATS architecture for multi-dimensional po...

Full description

Saved in:
Bibliographic Details
Main Authors: Baljinder Kaur, Manik Rakhra, Nonita Sharma, Deepak Prashar, Leo Mrsic, Arfat Ahmad Khan, Seifedine Kadry
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2025-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0320979
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The agricultural economy heavily relies on poultry production, making accurate forecasting of poultry data crucial for optimizing revenue, streamlining resource utilization, and maximizing productivity. This research introduces a novel application of the N-BEATS architecture for multi-dimensional poultry data forecasting with enhanced interpretability through an integrated Explainable AI (XAI) framework. Leveraging its advanced capabilities in time series modeling, N-BEATS is applied to predict multiple facets of poultry disease diagnostics using a multivariate dataset comprising key environmental parameters. The methodology empowers decision-making in poultry farm management by providing transparent and interpretable forecasts. Experimental results demonstrate that N-BEATS outperforms conventional deep learning models, including LSTM, GRU, RNN, and CNN, across various error metrics, achieving MAE of 0.172, RMSE of 0.313, MSLE of 0.042, R-squared of 0.034, and RMSLE of 0.204. The positive R-squared value indicates the model's robustness against underfitting and overfitting, surpassing the performance of other models with negative R-squared values. This study establishes N-BEATS as a superior and interpretable solution for complex, multi-dimensional forecasting challenges in poultry production, with significant implications for enhancing predictive analytics in agriculture.
ISSN:1932-6203