N-Beats architecture for explainable forecasting of multi-dimensional poultry data.
The agricultural economy heavily relies on poultry production, making accurate forecasting of poultry data crucial for optimizing revenue, streamlining resource utilization, and maximizing productivity. This research introduces a novel application of the N-BEATS architecture for multi-dimensional po...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Public Library of Science (PLoS)
2025-01-01
|
| Series: | PLoS ONE |
| Online Access: | https://doi.org/10.1371/journal.pone.0320979 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The agricultural economy heavily relies on poultry production, making accurate forecasting of poultry data crucial for optimizing revenue, streamlining resource utilization, and maximizing productivity. This research introduces a novel application of the N-BEATS architecture for multi-dimensional poultry data forecasting with enhanced interpretability through an integrated Explainable AI (XAI) framework. Leveraging its advanced capabilities in time series modeling, N-BEATS is applied to predict multiple facets of poultry disease diagnostics using a multivariate dataset comprising key environmental parameters. The methodology empowers decision-making in poultry farm management by providing transparent and interpretable forecasts. Experimental results demonstrate that N-BEATS outperforms conventional deep learning models, including LSTM, GRU, RNN, and CNN, across various error metrics, achieving MAE of 0.172, RMSE of 0.313, MSLE of 0.042, R-squared of 0.034, and RMSLE of 0.204. The positive R-squared value indicates the model's robustness against underfitting and overfitting, surpassing the performance of other models with negative R-squared values. This study establishes N-BEATS as a superior and interpretable solution for complex, multi-dimensional forecasting challenges in poultry production, with significant implications for enhancing predictive analytics in agriculture. |
|---|---|
| ISSN: | 1932-6203 |