Permafrost–wildfire interactions: active layer thickness estimates for paired burned and unburned sites in northern high latitudes
<p>As the northern high-latitude permafrost zone experiences accelerated warming, permafrost has become vulnerable to widespread thaw. Simultaneously, wildfire activity across northern boreal forest and Arctic/subarctic tundra regions impacts permafrost stability through the combustion of insu...
Saved in:
| Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Copernicus Publications
2025-06-01
|
| Series: | Earth System Science Data |
| Online Access: | https://essd.copernicus.org/articles/17/2887/2025/essd-17-2887-2025.pdf |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849431013888884736 |
|---|---|
| author | A. C. Talucci M. M. Loranty J. E. Holloway B. M. Rogers H. D. Alexander N. Baillargeon J. L. Baltzer L. T. Berner A. Breen L. Brodt B. Buma B. Buma J. Dean C. J. F. Delcourt L. R. Diaz C. M. Dieleman T. A. Douglas G. V. Frost B. V. Gaglioti R. E. Hewitt T. Hollingsworth T. Hollingsworth M. T. Jorgenson M. J. Lara R. A. Loehman M. C. Mack K. L. Manies C. Minions S. M. Natali J. A. O'Donnell D. Olefeldt A. K. Paulson A. V. Rocha L. B. Saperstein T. A. Shestakova T. A. Shestakova T. A. Shestakova S. Sistla O. Sizov A. Soromotin M. R. Turetsky S. Veraverbeke M. A. Walvoord |
| author_facet | A. C. Talucci M. M. Loranty J. E. Holloway B. M. Rogers H. D. Alexander N. Baillargeon J. L. Baltzer L. T. Berner A. Breen L. Brodt B. Buma B. Buma J. Dean C. J. F. Delcourt L. R. Diaz C. M. Dieleman T. A. Douglas G. V. Frost B. V. Gaglioti R. E. Hewitt T. Hollingsworth T. Hollingsworth M. T. Jorgenson M. J. Lara R. A. Loehman M. C. Mack K. L. Manies C. Minions S. M. Natali J. A. O'Donnell D. Olefeldt A. K. Paulson A. V. Rocha L. B. Saperstein T. A. Shestakova T. A. Shestakova T. A. Shestakova S. Sistla O. Sizov A. Soromotin M. R. Turetsky S. Veraverbeke M. A. Walvoord |
| author_sort | A. C. Talucci |
| collection | DOAJ |
| description | <p>As the northern high-latitude permafrost zone experiences accelerated warming, permafrost has become vulnerable to widespread thaw. Simultaneously, wildfire activity across northern boreal forest and Arctic/subarctic tundra regions impacts permafrost stability through the combustion of insulating organic matter, vegetation, and post-fire changes in albedo. Efforts to synthesis the impacts of wildfire on permafrost are limited and are typically reliant on antecedent pre-fire conditions. To address this, we created the FireALT dataset by soliciting data contributions that included thaw depth measurements, site conditions, and fire event details with paired measurements at environmentally comparable burned and unburned sites. The solicitation resulted in 52 466 thaw depth measurements from 18 contributors across North America and Russia. Because thaw depths were taken at various times throughout the thawing season, we also estimated end-of-season active layer thickness (ALT) for each measurement using a modified version of the Stefan equation. Here, we describe our methods for collecting and quality-checking the data, estimating ALT, the data structure, strengths and limitations, and future research opportunities. The final dataset includes 48 669 ALT estimates with 32 attributes across 9446 plots and 157 burned–unburned pairs spanning Canada, Russia, and the United States. The data span fire events from 1900 to 2022 with measurements collected from 2001 to 2023. The time since fire ranges from 0 to 114 years. The FireALT dataset addresses a key challenge: the ability to assess impacts of wildfire on ALT when measurements are taken at various times throughout the thaw season depending on the time of field campaigns (typically June through August) by estimating ALT at the end-of-season maximum. This dataset can be used to address understudied research areas, particularly algorithm development, calibration, and validation for evolving process-based models as well as extrapolating across space and time, which could elucidate permafrost–wildfire interactions under accelerated warming across the high-northern-latitude permafrost zone. The FireALT dataset is available through the Arctic Data Center (<a href="https://doi.org/10.18739/A2RN3092P">https://doi.org/10.18739/A2RN3092P</a>, Talucci et al., 2024).</p> |
| format | Article |
| id | doaj-art-0cf1554e5a304bcd8651b82c17ff9e30 |
| institution | Kabale University |
| issn | 1866-3508 1866-3516 |
| language | English |
| publishDate | 2025-06-01 |
| publisher | Copernicus Publications |
| record_format | Article |
| series | Earth System Science Data |
| spelling | doaj-art-0cf1554e5a304bcd8651b82c17ff9e302025-08-20T03:27:47ZengCopernicus PublicationsEarth System Science Data1866-35081866-35162025-06-01172887290910.5194/essd-17-2887-2025Permafrost–wildfire interactions: active layer thickness estimates for paired burned and unburned sites in northern high latitudesA. C. Talucci0M. M. Loranty1J. E. Holloway2B. M. Rogers3H. D. Alexander4N. Baillargeon5J. L. Baltzer6L. T. Berner7A. Breen8L. Brodt9B. Buma10B. Buma11J. Dean12C. J. F. Delcourt13L. R. Diaz14C. M. Dieleman15T. A. Douglas16G. V. Frost17B. V. Gaglioti18R. E. Hewitt19T. Hollingsworth20T. Hollingsworth21M. T. Jorgenson22M. J. Lara23R. A. Loehman24M. C. Mack25K. L. Manies26C. Minions27S. M. Natali28J. A. O'Donnell29D. Olefeldt30A. K. Paulson31A. V. Rocha32L. B. Saperstein33T. A. Shestakova34T. A. Shestakova35T. A. Shestakova36S. Sistla37O. Sizov38A. Soromotin39M. R. Turetsky40S. Veraverbeke41M. A. Walvoord42Woodwell Climate Research Center, Falmouth, MA 02540-1644, USADepartment of Geography, Colgate University, Hamilton, NY 13346, USADepartment of Geography, Environment and Geomatics, University of Ottawa, Ottawa, K1N 6N5, CanadaWoodwell Climate Research Center, Falmouth, MA 02540-1644, USACollege of Forestry, Wildlife, and Environment, Auburn University, Auburn, AL 36949, USAWoodwell Climate Research Center, Falmouth, MA 02540-1644, USABiology Department, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, CanadaSchool of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USAInternational Arctic Research Center, University of Alaska Fairbanks, Fairbanks, AK 99775-7340, USAResearch Institute of Ecology and Natural Resources Management, Tyumen State University, Tyumen, 625003, RussiaIntegrative Biology, University of Colorado (Denver), Boulder, CO 80304, USAEnvironmental Defense Fund, Boulder, CO 80302, USAWoodwell Climate Research Center, Falmouth, MA 02540-1644, USAFaculty of Science, Vrije Universiteit Amsterdam, Amsterdam, 1081 HV, the NetherlandsFaculty of Science, Vrije Universiteit Amsterdam, Amsterdam, 1081 HV, the NetherlandsSchool of Environmental Sciences, University of Guelph, Guelph, ON, N3H3Y8, CanadaUS Army Cold Regions Research and Engineering Laboratory, Fort Wainwright, AK 99703, USAAlaska Biological Research, Inc., Fairbanks, AK 99708, USAWater and Environmental Research Center, University of Alaska Fairbanks, Fairbanks, AK 99775, USADepartment of Environmental Studies, Amherst College, Amherst, MA 01002, USAPacific Northwest Research Station, USDA Forest Service, University of Alaska Fairbanks, Fairbanks, AK 99708, USAAldo Leopold Wilderness Research Institute, Rocky Mountain Research Station, Missoula, MT 59801, USAAlaska Ecoscience, Fairbanks, AK 99775, USADepartment(s) of Plant Biology and Geography, University of Illinois Urbana-Champaign, Urbana, IL 61801, USAUS Geological Survey, Alaska Science Center, Anchorage, AK 99508, USACenter for Ecosystem Science and Society and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86001, USAUS Geological Survey, Moffett Field, CA 94035, USAWoodwell Climate Research Center, Falmouth, MA 02540-1644, USAWoodwell Climate Research Center, Falmouth, MA 02540-1644, USAArctic Network, National Park Service, Anchorage, AK 99501, USADepartment of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2G7, CanadaHumboldt-Toiyabe National Forest, US Forest Service, Sparks, NV 89431, USADepartment of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USAAlaska Regional Office, US Fish and Wildlife Service, Anchorage, AK 99503, USAWoodwell Climate Research Center, Falmouth, MA 02540-1644, USADepartment of Agricultural and Forest Sciences and Engineering, University of Lleida, Av. Alcalde Rovira Roure 191, Lleida, Catalonia, 25198, SpainJoint Research Unit CTFC–AGROTECNIO–CERCA, Av. Alcalde Rovira Roure 191, Lleida, Catalonia, 25198, SpainNatural Resources Management & Environmental Sciences, Cal Poly, San Luis Obispo, CA 93401, USAOil and Gas Research Institute RAS, Moscow, 119333, RussiaResearch Institute of Ecology and Natural Resources Management, Tyumen State University, Tyumen, 625003, RussiaRenewable and Sustainable Energy Institute, Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO 80309-0552, USAFaculty of Science, Vrije Universiteit Amsterdam, Amsterdam, 1081 HV, the NetherlandsUS Geological Survey, Earth System Processes Division, Denver, CO 80225, USA<p>As the northern high-latitude permafrost zone experiences accelerated warming, permafrost has become vulnerable to widespread thaw. Simultaneously, wildfire activity across northern boreal forest and Arctic/subarctic tundra regions impacts permafrost stability through the combustion of insulating organic matter, vegetation, and post-fire changes in albedo. Efforts to synthesis the impacts of wildfire on permafrost are limited and are typically reliant on antecedent pre-fire conditions. To address this, we created the FireALT dataset by soliciting data contributions that included thaw depth measurements, site conditions, and fire event details with paired measurements at environmentally comparable burned and unburned sites. The solicitation resulted in 52 466 thaw depth measurements from 18 contributors across North America and Russia. Because thaw depths were taken at various times throughout the thawing season, we also estimated end-of-season active layer thickness (ALT) for each measurement using a modified version of the Stefan equation. Here, we describe our methods for collecting and quality-checking the data, estimating ALT, the data structure, strengths and limitations, and future research opportunities. The final dataset includes 48 669 ALT estimates with 32 attributes across 9446 plots and 157 burned–unburned pairs spanning Canada, Russia, and the United States. The data span fire events from 1900 to 2022 with measurements collected from 2001 to 2023. The time since fire ranges from 0 to 114 years. The FireALT dataset addresses a key challenge: the ability to assess impacts of wildfire on ALT when measurements are taken at various times throughout the thaw season depending on the time of field campaigns (typically June through August) by estimating ALT at the end-of-season maximum. This dataset can be used to address understudied research areas, particularly algorithm development, calibration, and validation for evolving process-based models as well as extrapolating across space and time, which could elucidate permafrost–wildfire interactions under accelerated warming across the high-northern-latitude permafrost zone. The FireALT dataset is available through the Arctic Data Center (<a href="https://doi.org/10.18739/A2RN3092P">https://doi.org/10.18739/A2RN3092P</a>, Talucci et al., 2024).</p>https://essd.copernicus.org/articles/17/2887/2025/essd-17-2887-2025.pdf |
| spellingShingle | A. C. Talucci M. M. Loranty J. E. Holloway B. M. Rogers H. D. Alexander N. Baillargeon J. L. Baltzer L. T. Berner A. Breen L. Brodt B. Buma B. Buma J. Dean C. J. F. Delcourt L. R. Diaz C. M. Dieleman T. A. Douglas G. V. Frost B. V. Gaglioti R. E. Hewitt T. Hollingsworth T. Hollingsworth M. T. Jorgenson M. J. Lara R. A. Loehman M. C. Mack K. L. Manies C. Minions S. M. Natali J. A. O'Donnell D. Olefeldt A. K. Paulson A. V. Rocha L. B. Saperstein T. A. Shestakova T. A. Shestakova T. A. Shestakova S. Sistla O. Sizov A. Soromotin M. R. Turetsky S. Veraverbeke M. A. Walvoord Permafrost–wildfire interactions: active layer thickness estimates for paired burned and unburned sites in northern high latitudes Earth System Science Data |
| title | Permafrost–wildfire interactions: active layer thickness estimates for paired burned and unburned sites in northern high latitudes |
| title_full | Permafrost–wildfire interactions: active layer thickness estimates for paired burned and unburned sites in northern high latitudes |
| title_fullStr | Permafrost–wildfire interactions: active layer thickness estimates for paired burned and unburned sites in northern high latitudes |
| title_full_unstemmed | Permafrost–wildfire interactions: active layer thickness estimates for paired burned and unburned sites in northern high latitudes |
| title_short | Permafrost–wildfire interactions: active layer thickness estimates for paired burned and unburned sites in northern high latitudes |
| title_sort | permafrost wildfire interactions active layer thickness estimates for paired burned and unburned sites in northern high latitudes |
| url | https://essd.copernicus.org/articles/17/2887/2025/essd-17-2887-2025.pdf |
| work_keys_str_mv | AT actalucci permafrostwildfireinteractionsactivelayerthicknessestimatesforpairedburnedandunburnedsitesinnorthernhighlatitudes AT mmloranty permafrostwildfireinteractionsactivelayerthicknessestimatesforpairedburnedandunburnedsitesinnorthernhighlatitudes AT jeholloway permafrostwildfireinteractionsactivelayerthicknessestimatesforpairedburnedandunburnedsitesinnorthernhighlatitudes AT bmrogers permafrostwildfireinteractionsactivelayerthicknessestimatesforpairedburnedandunburnedsitesinnorthernhighlatitudes AT hdalexander permafrostwildfireinteractionsactivelayerthicknessestimatesforpairedburnedandunburnedsitesinnorthernhighlatitudes AT nbaillargeon permafrostwildfireinteractionsactivelayerthicknessestimatesforpairedburnedandunburnedsitesinnorthernhighlatitudes AT jlbaltzer permafrostwildfireinteractionsactivelayerthicknessestimatesforpairedburnedandunburnedsitesinnorthernhighlatitudes AT ltberner permafrostwildfireinteractionsactivelayerthicknessestimatesforpairedburnedandunburnedsitesinnorthernhighlatitudes AT abreen permafrostwildfireinteractionsactivelayerthicknessestimatesforpairedburnedandunburnedsitesinnorthernhighlatitudes AT lbrodt permafrostwildfireinteractionsactivelayerthicknessestimatesforpairedburnedandunburnedsitesinnorthernhighlatitudes AT bbuma permafrostwildfireinteractionsactivelayerthicknessestimatesforpairedburnedandunburnedsitesinnorthernhighlatitudes AT bbuma permafrostwildfireinteractionsactivelayerthicknessestimatesforpairedburnedandunburnedsitesinnorthernhighlatitudes AT jdean permafrostwildfireinteractionsactivelayerthicknessestimatesforpairedburnedandunburnedsitesinnorthernhighlatitudes AT cjfdelcourt permafrostwildfireinteractionsactivelayerthicknessestimatesforpairedburnedandunburnedsitesinnorthernhighlatitudes AT lrdiaz permafrostwildfireinteractionsactivelayerthicknessestimatesforpairedburnedandunburnedsitesinnorthernhighlatitudes AT cmdieleman permafrostwildfireinteractionsactivelayerthicknessestimatesforpairedburnedandunburnedsitesinnorthernhighlatitudes AT tadouglas permafrostwildfireinteractionsactivelayerthicknessestimatesforpairedburnedandunburnedsitesinnorthernhighlatitudes AT gvfrost permafrostwildfireinteractionsactivelayerthicknessestimatesforpairedburnedandunburnedsitesinnorthernhighlatitudes AT bvgaglioti permafrostwildfireinteractionsactivelayerthicknessestimatesforpairedburnedandunburnedsitesinnorthernhighlatitudes AT rehewitt permafrostwildfireinteractionsactivelayerthicknessestimatesforpairedburnedandunburnedsitesinnorthernhighlatitudes AT thollingsworth permafrostwildfireinteractionsactivelayerthicknessestimatesforpairedburnedandunburnedsitesinnorthernhighlatitudes AT thollingsworth permafrostwildfireinteractionsactivelayerthicknessestimatesforpairedburnedandunburnedsitesinnorthernhighlatitudes AT mtjorgenson permafrostwildfireinteractionsactivelayerthicknessestimatesforpairedburnedandunburnedsitesinnorthernhighlatitudes AT mjlara permafrostwildfireinteractionsactivelayerthicknessestimatesforpairedburnedandunburnedsitesinnorthernhighlatitudes AT raloehman permafrostwildfireinteractionsactivelayerthicknessestimatesforpairedburnedandunburnedsitesinnorthernhighlatitudes AT mcmack permafrostwildfireinteractionsactivelayerthicknessestimatesforpairedburnedandunburnedsitesinnorthernhighlatitudes AT klmanies permafrostwildfireinteractionsactivelayerthicknessestimatesforpairedburnedandunburnedsitesinnorthernhighlatitudes AT cminions permafrostwildfireinteractionsactivelayerthicknessestimatesforpairedburnedandunburnedsitesinnorthernhighlatitudes AT smnatali permafrostwildfireinteractionsactivelayerthicknessestimatesforpairedburnedandunburnedsitesinnorthernhighlatitudes AT jaodonnell permafrostwildfireinteractionsactivelayerthicknessestimatesforpairedburnedandunburnedsitesinnorthernhighlatitudes AT dolefeldt permafrostwildfireinteractionsactivelayerthicknessestimatesforpairedburnedandunburnedsitesinnorthernhighlatitudes AT akpaulson permafrostwildfireinteractionsactivelayerthicknessestimatesforpairedburnedandunburnedsitesinnorthernhighlatitudes AT avrocha permafrostwildfireinteractionsactivelayerthicknessestimatesforpairedburnedandunburnedsitesinnorthernhighlatitudes AT lbsaperstein permafrostwildfireinteractionsactivelayerthicknessestimatesforpairedburnedandunburnedsitesinnorthernhighlatitudes AT tashestakova permafrostwildfireinteractionsactivelayerthicknessestimatesforpairedburnedandunburnedsitesinnorthernhighlatitudes AT tashestakova permafrostwildfireinteractionsactivelayerthicknessestimatesforpairedburnedandunburnedsitesinnorthernhighlatitudes AT tashestakova permafrostwildfireinteractionsactivelayerthicknessestimatesforpairedburnedandunburnedsitesinnorthernhighlatitudes AT ssistla permafrostwildfireinteractionsactivelayerthicknessestimatesforpairedburnedandunburnedsitesinnorthernhighlatitudes AT osizov permafrostwildfireinteractionsactivelayerthicknessestimatesforpairedburnedandunburnedsitesinnorthernhighlatitudes AT asoromotin permafrostwildfireinteractionsactivelayerthicknessestimatesforpairedburnedandunburnedsitesinnorthernhighlatitudes AT mrturetsky permafrostwildfireinteractionsactivelayerthicknessestimatesforpairedburnedandunburnedsitesinnorthernhighlatitudes AT sveraverbeke permafrostwildfireinteractionsactivelayerthicknessestimatesforpairedburnedandunburnedsitesinnorthernhighlatitudes AT mawalvoord permafrostwildfireinteractionsactivelayerthicknessestimatesforpairedburnedandunburnedsitesinnorthernhighlatitudes |