Embankment Breach Simulation and Inundation Mapping Leveraging High-Performance Computing for Enhanced Flood Risk Prediction and Assessment
Embankment breaches represent significant hazards to communities and infrastructure, precipitating catastrophic flood occurrences. The precise prediction of floods and understanding the scope of inundation stemming from embankment failures are imperative for effective disaster preparedness and respo...
Saved in:
| Main Authors: | , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Copernicus Publications
2024-11-01
|
| Series: | ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
| Online Access: | https://isprs-annals.copernicus.org/articles/X-3-2024/117/2024/isprs-annals-X-3-2024-117-2024.pdf |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1850178480952573952 |
|---|---|
| author | U. Dutta Y. K. Singh T. S. M. Prabhu G. Yendargaye R. Kale M. K. Khare B. Kumar R. Panchang |
| author_facet | U. Dutta Y. K. Singh T. S. M. Prabhu G. Yendargaye R. Kale M. K. Khare B. Kumar R. Panchang |
| author_sort | U. Dutta |
| collection | DOAJ |
| description | Embankment breaches represent significant hazards to communities and infrastructure, precipitating catastrophic flood occurrences. The precise prediction of floods and understanding the scope of inundation stemming from embankment failures are imperative for effective disaster preparedness and response. This research delves into a case study on simulating embankment breaches to evaluate the extent of flooding. Leveraging advanced hydrodynamic models validated through high-performance computing (HPC) systems, and integrating real-time data assimilation, we aim to improve accuracy in flood forecasting. The study endeavours to bolster flood risk management by furnishing detailed inundation maps and insights into embankment breach dynamics, thereby facilitating enhanced preparedness and response strategies. Our findings reveal that simulations conducted on multicore processors offer superior performance compared to single-core setups, yielding enhanced result accuracy and providing administrators with increased lead time. It unlocks high-resolution simulations for intricate basin details, explores a wider range of flood scenarios quickly, and allows for efficient ensemble modelling to assess model uncertainty. Through HPC utilization, we can harness high-resolution digital elevation models (DEMs) for 2D-hydrodynamic modelling, enabling rapid assessment of water spread resulting from embankment breaches within a mere 20-minute timeframe, a significant improvement from the previous 3–4 hours duration. |
| format | Article |
| id | doaj-art-0cdd96c4fab64db58cbd4e88862f7e4c |
| institution | OA Journals |
| issn | 2194-9042 2194-9050 |
| language | English |
| publishDate | 2024-11-01 |
| publisher | Copernicus Publications |
| record_format | Article |
| series | ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
| spelling | doaj-art-0cdd96c4fab64db58cbd4e88862f7e4c2025-08-20T02:18:43ZengCopernicus PublicationsISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences2194-90422194-90502024-11-01X-3-202411712310.5194/isprs-annals-X-3-2024-117-2024Embankment Breach Simulation and Inundation Mapping Leveraging High-Performance Computing for Enhanced Flood Risk Prediction and AssessmentU. Dutta0Y. K. Singh1T. S. M. Prabhu2G. Yendargaye3R. Kale4M. K. Khare5B. Kumar6R. Panchang7HPC-ESEG Group, Centre for Development of Advanced Computing, IP, Panchvati, Pashan, Pune, IndiaHPC-ESEG Group, Centre for Development of Advanced Computing, IP, Panchvati, Pashan, Pune, IndiaHPC-ESEG Group, Centre for Development of Advanced Computing, IP, Panchvati, Pashan, Pune, IndiaHPC-ESEG Group, Centre for Development of Advanced Computing, IP, Panchvati, Pashan, Pune, IndiaHPC-ESEG Group, Centre for Development of Advanced Computing, IP, Panchvati, Pashan, Pune, IndiaHPC-ESEG Group, Centre for Development of Advanced Computing, IP, Panchvati, Pashan, Pune, IndiaHPC-ESEG Group, Centre for Development of Advanced Computing, IP, Panchvati, Pashan, Pune, IndiaDepartment of Environment Science, Savitribai Phule Pune University (SPPU), Pune, IndiaEmbankment breaches represent significant hazards to communities and infrastructure, precipitating catastrophic flood occurrences. The precise prediction of floods and understanding the scope of inundation stemming from embankment failures are imperative for effective disaster preparedness and response. This research delves into a case study on simulating embankment breaches to evaluate the extent of flooding. Leveraging advanced hydrodynamic models validated through high-performance computing (HPC) systems, and integrating real-time data assimilation, we aim to improve accuracy in flood forecasting. The study endeavours to bolster flood risk management by furnishing detailed inundation maps and insights into embankment breach dynamics, thereby facilitating enhanced preparedness and response strategies. Our findings reveal that simulations conducted on multicore processors offer superior performance compared to single-core setups, yielding enhanced result accuracy and providing administrators with increased lead time. It unlocks high-resolution simulations for intricate basin details, explores a wider range of flood scenarios quickly, and allows for efficient ensemble modelling to assess model uncertainty. Through HPC utilization, we can harness high-resolution digital elevation models (DEMs) for 2D-hydrodynamic modelling, enabling rapid assessment of water spread resulting from embankment breaches within a mere 20-minute timeframe, a significant improvement from the previous 3–4 hours duration.https://isprs-annals.copernicus.org/articles/X-3-2024/117/2024/isprs-annals-X-3-2024-117-2024.pdf |
| spellingShingle | U. Dutta Y. K. Singh T. S. M. Prabhu G. Yendargaye R. Kale M. K. Khare B. Kumar R. Panchang Embankment Breach Simulation and Inundation Mapping Leveraging High-Performance Computing for Enhanced Flood Risk Prediction and Assessment ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
| title | Embankment Breach Simulation and Inundation Mapping Leveraging High-Performance Computing for Enhanced Flood Risk Prediction and Assessment |
| title_full | Embankment Breach Simulation and Inundation Mapping Leveraging High-Performance Computing for Enhanced Flood Risk Prediction and Assessment |
| title_fullStr | Embankment Breach Simulation and Inundation Mapping Leveraging High-Performance Computing for Enhanced Flood Risk Prediction and Assessment |
| title_full_unstemmed | Embankment Breach Simulation and Inundation Mapping Leveraging High-Performance Computing for Enhanced Flood Risk Prediction and Assessment |
| title_short | Embankment Breach Simulation and Inundation Mapping Leveraging High-Performance Computing for Enhanced Flood Risk Prediction and Assessment |
| title_sort | embankment breach simulation and inundation mapping leveraging high performance computing for enhanced flood risk prediction and assessment |
| url | https://isprs-annals.copernicus.org/articles/X-3-2024/117/2024/isprs-annals-X-3-2024-117-2024.pdf |
| work_keys_str_mv | AT udutta embankmentbreachsimulationandinundationmappingleveraginghighperformancecomputingforenhancedfloodriskpredictionandassessment AT yksingh embankmentbreachsimulationandinundationmappingleveraginghighperformancecomputingforenhancedfloodriskpredictionandassessment AT tsmprabhu embankmentbreachsimulationandinundationmappingleveraginghighperformancecomputingforenhancedfloodriskpredictionandassessment AT gyendargaye embankmentbreachsimulationandinundationmappingleveraginghighperformancecomputingforenhancedfloodriskpredictionandassessment AT rkale embankmentbreachsimulationandinundationmappingleveraginghighperformancecomputingforenhancedfloodriskpredictionandassessment AT mkkhare embankmentbreachsimulationandinundationmappingleveraginghighperformancecomputingforenhancedfloodriskpredictionandassessment AT bkumar embankmentbreachsimulationandinundationmappingleveraginghighperformancecomputingforenhancedfloodriskpredictionandassessment AT rpanchang embankmentbreachsimulationandinundationmappingleveraginghighperformancecomputingforenhancedfloodriskpredictionandassessment |